Abstract

Accurate forecasting is the key factor in promoting wind power consumption and improving the stable operation of power systems. A short-term wind power forecasting (WPF) and uncertainty analysis method based on whale optimization algorithm (WOA), least squares support vector machine (LSSVM), and nonparametric kernel density estimation (NPKDE) was proposed in this paper. The advantages of WOA (fast convergence speed and high convergence accuracy) were used to optimize the penalty factor and kernel function width of the LSSVM model, and the calculation speed and forecasting accuracy of the LSSVM model were improved. The training sample set is classified according to the wind speed interval, and the WOA-LSSVM forecasting model is trained by subclass after classification to further improve the accuracy of short-term WPF. The NPKDE method is used to accurately calculate the probability density distribution characteristics of the forecasting error of wind power, and the confidence interval of the WPF is accurately calculated based on the probability density distribution characteristics. The calculation results show that the forecasting accuracy of the WOA-LSSVM model is higher than those of the LSSVM, long short-term memory (LSTM), and particle swarm optimization and least squares support vector machine (PSO-LSSVM) models, and the forecasting accuracy of the WOA-LSSVM model can be further improved after classifying the training sample set. The coverage of the confidence intervals in different time scales is higher than the corresponding confidence level, indicating that the NPKDE method can accurately describe the probability density distribution characteristics of the WPF errors.

References

1.
Liu
,
C.
,
Fan
,
G. F.
,
Wang
,
W. S.
, and
Dai
,
H. Z.
,
2009
, “
A Combination Forecasting Model for Wind Farm Output Power
,”
Power Syst. Technol.
,
33
(
13
), pp.
74
79
. 10.1109/DRPT.2011.5994094
2.
Xue
,
Y. S.
,
Yu
,
C.
,
Zhao
,
J. H.
,
Liu
,
X.
,
Li
,
K.
,
Qiu
,
W.
, and
Gang
,
Y.
,
2015
, “
A Review on Short-Term and Ultra-Short-Term Wind Power Prediction
,”
Autom. Electr. Power Syst.
,
39
(
06
), pp.
141
151
. 10.7500/AEPS20141218003
3.
Li
,
C. B.
,
Lin
,
S. S.
,
Xu
,
F. Q.
,
Liu
,
D.
, and
Liu
,
J.
,
2018
, “
Short-term Wind Power Prediction Based on Data Mining Technology and Improved Support Vector Machine Method: A Case Study in Northwest China
,”
J. Cleaner Prod.
,
205
(
1
), pp.
909
922
. 10.1016/j.jclepro.2018.09.143
4.
Guermoui
,
M.
,
Gairaa
,
K.
,
Boland
,
J.
, and
Arrif
,
T.
,
2020
, “
A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), pp.
1
53
. 10.1115/1.4047852
5.
Yuan
,
X. H.
,
Tan
,
Q. X.
,
Lei
,
X. H.
,
Yuan
,
Y.
, and
Wu
,
X.
,
2017
, “
Wind Power Prediction Using Hybrid Autoregressive Fractionally Integrated Moving Average and Least Square Support Vector Machine
,”
Energy
,
129
(
1
), pp.
122
137
. 10.1016/j.energy.2017.04.094
6.
Xu
,
J. Y.
,
Wang
,
Y.
, and
Ji
,
Z. C.
,
2017
, “
Fault Diagnosis Method of Rolling Bearing Based on WKELM Optimized by Whale Optimization Algorithm
,”
J. Syst. Simul.
,
29
(
9
), pp.
2189
2197
. 10.16182/j.issn1004731x.joss.201709042
7.
Hu
,
J. X.
,
Jia
,
H. M.
,
Xing
,
Z. K.
,
Zhu
,
B. Z.
,
Zhang
,
S.
, and
Huang
,
Y. Q.
,
2018
, “
Multi Threshold Segmentation of Forest Fire Image Based on Whale Algorithm
,”
For. Eng.
,
34
(
4
), pp.
70
74
. 10.16270/j.cnki.slgc.2018.04.012
8.
Fan
,
Q. F.
,
Liao
,
A. H.
, and
Ding
,
Y. Q.
,
2019
, “
Prediction of Rolling Bearing Degradation Trend Based on WOA-RVM
,”
Modular Mach. Tool Autom. Manuf. Tech.
,
11
(
1
), pp.
58
66
. 10.13462/j.cnki.mmtamt.2019.11.015
9.
Xu
,
H.
,
Fu
,
Y. C.
,
Fu
,
C. H.
, and
Ye
,
Z.
,
2019
, “
Improved Whale Optimization Algorithm to Optimize Support Vector Machine for Network Intrusion Detection
,”
Res. Explor. Lab.
,
38
(
8
), pp.
128
133
. 10.3969/j.issn.1006-7167.2019.08.031
10.
He
,
H. L.
,
Zheng
,
J. B.
,
Yu
,
F. L.
,
Yu
,
L.
, and
Zhan
,
E.
,
2019
, “
Exoskeleton Robot Gait Detection Based on Improved Whale Optimization Algorithm
,”
J. Comput. Appl.
,
39
(
7
), pp.
1905
1911
.
11.
Kritharas
,
P. P.
, and
Watson
,
S. J.
,
2010
, “
A Comparison of Long-Term Wind Speed Forecasting Models
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041008
. 10.1115/1.4002346
12.
Lange
,
M.
,
2005
, “
On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
177
184
. 10.1115/1.1862266
13.
Ji
,
F.
,
Cai
,
X. G.
, and
Wang
,
J.
,
2014
, “
Wind Power Correlation Analysis Based on Hybrid Copula
,”
Autom. Electr. Power Syst.
,
38
(
2
), pp.
1
5
. 10.7500/AEPS201208067
14.
Yang
,
H.
,
Yuan
,
J. S.
, and
Zhang
,
T. F.
,
2015
, “
A Model and Algorithm for Minimum Probability Interval of Wind Power Forecast Errors Based on Beta Distribution
,”
Proc. CSEE
,
35
(
9
), pp.
2135
2142
. 10.13334/j.0258-8013.pcsee.2015.09.005
15.
Liu
,
Y. H.
,
Li
,
W. H.
,
Liu
,
C.
, and
Zhang
,
D.
,
2015
, “
Mixed Skew Distribution Model of Short-Term Wind Power Prediction Error
,”
Proc. CSEE
,
35
(
10
), pp.
2375
2382
. 10.13334/j.0258-8013.pcsee.2015.10.002
16.
Yang
,
M.
, and
Dong
,
J. C.
,
2016
, “
Real-time Prediction Error Analysis of Wind Power Based on Mixed Gaussian Distribution Model
,”
Acta Energ. Sol. Sin.
,
37
(
6
), pp.
1594
1602
. 10.3969/j.issn.0254-0096.2016.06.036
17.
Ding
,
H. J.
,
Yonghua
,
S.
,
Zechun
,
H.
,
2013
, “
Probability Density Function of Day-Ahead Wind Power Forecast Errors Based on Power Curves of Wind Farms
,”
Proc. CSEE
,
33
(
34
), pp.
136
144
. 10.13334/j.0258-8013.pcsee.2013.34.019
18.
Nielsen
,
H. A.
,
Madsen
,
H.
, and
Nielsen
,
T. S.
,
2006
, “
Using Quantile Regression to Extend an Existing Wind Power Forecasting System with Probabilistic Forecasts
,”
Wind Energy
,
9
(
1–2
), pp.
95
108
. 10.1002/we.180
19.
Sugiyama
,
S.
,
2007
, “
Forecast Uncertainty and Monte Carlo Simulation
,”
Soc. Sci. Electron. Publ.
,
3
(
6
), pp.
29
37
.
20.
Zhang
,
G.
,
Wu
,
Y.
,
Wong
,
K. P.
,
Xu
,
Z.
,
Dong
,
Z. Y.
, and
Iu
,
H. H.-C.
,
2015
, “
An Advanced Approach for Construction of Optimal Wind Power Prediction Intervals
,”
IEEE Trans. Power Syst.
,
30
(
5
), pp.
2706
2715
. 10.1109/TPWRS.2014.2363873
21.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Software
,
95
(
1
), pp.
51
67
. 10.1007/s13198-019-00801-0
You do not currently have access to this content.