Abstract

This study developed a methodology for determining the intercept factor (γ) and reports the effects of varying the design parameters, within realistic ranges, on the optical performance of parabolic trough collectors (PTC). The design equations account for the aperture width of the concentrator, the geometric concentration ratio, rim-angle, and misalignment of the receiver, characterized by the radial and angular offsets. The Latin Hypercube Sampling (LHS)-based ray-tracing method was used. Validation of the method was performed by comparing the results obtained by tracing a single ray with measurements obtained in a two-dimensional (2D) drafting program. Then, parametric analyses were performed to determine the effects of changing the radial and angular offset, geometric concentration ratio, and rim-angle on the percentage change in intercept factor (γΔ) with respect to the γ of a PTC with a perfectly aligned receiver. Finally, contour plots depicting the γ of various standard troughs over the range of radial and angular offsets were plotted, compared, and discussed. An online tool is also presented to help designers and researchers analyze these effects quickly by providing the design parameters.

References

1.
Odeh
,
S.
,
Morrison
,
G.
, and
Behnia
,
M.
,
1998
, “
Modelling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
(
6
), pp.
395
406
.
2.
Uzair
,
M.
,
Rehman
,
N.
, and
Raza
,
S.
,
2018
, “
Probabilistic Approach for Estimating Heat Fluid Exit Temperature Correlation in a Linear Parabolic Trough Solar Collector
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
447
453
.
3.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
4.
Güven
,
H.
, and
Bannerot
,
R.
,
1986
, “
Determination of Error Tolerances for the Optical Design of Parabolic Troughs for Developing Countries
,”
Sol. Energy
,
36
(
6
), pp.
535
550
.
5.
Binotti
,
M.
,
Zhu
,
G.
,
Gray
,
A.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2013
, “
Geometric Analysis of Three-Dimensional Effects of Parabolic Trough Collectors
,”
Sol. Energy
,
88
(
1
), pp.
88
96
.
6.
Nakul
,
S.
, and
Arunachala
,
U.
,
2019
, “
Status, Trends and Significance of Parabolic Trough Technology in the Changing Heat Transportation Scenario
,”
Sol. Energy
,
187
(
1
), pp.
57
81
.
7.
Stynes
,
J.
, and
Ihas
,
B.
,
2012
, “
Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors
,”
Proceedings of the 6th International Conference on Energy Sustainability
,
San Diego, CA
,
July 23–26
, pp.
437
447
.
8.
Iverson
,
B.
,
Ehrhart
,
B.
, and
Flueckiger
,
S.
,
2011
,
Trough Heat Collection Element Deformation and Solar Intercept Impact
,
Sandia National Lab
,
Albuquerque, NM
.
9.
Yaghoubi
,
M.
, and
Akbarimoosavi
,
M.
,
2014
, “
Three Dimensional Thermal Expansion Analysis of an Absorber Tube in a Parabolic Trough Collector
,”
Energy Procedia
,
49
(
1
), pp.
2433
2443
.
10.
Zhu
,
G.
,
2013
, “
Study of the Optical Impact of Receiver Position Error on Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031021
.
11.
Prahl
,
C.
,
Röger
,
M.
,
Stanicki
,
B.
, and
Hilgert
,
C.
,
2017
, “
Absorber Tube Displacement in Parabolic Trough Collectors–A Review and Presentation of an Airborne Measurement Approach
,”
Sol. Energy
,
157
(
1
), pp.
692
706
.
12.
Heller
,
P.
,
Meyer-Grünefeldt
,
M.
,
Ebert
,
M.
,
Janotte
,
N.
,
Nouri
,
B.
,
Pottler
,
K.
,
Prahl
,
C.
,
Reinalter
,
W.
, and
Zarza
,
E.
,
2011
, “
KONTAS–A Rotary Test Bench for Standardized Qualification of Parabolic Trough Components
,”
Proceedings of the 17th SolarPACES
,
Granada, Spain
,
Sept. 20–23
, pp.
1
8
.
13.
Treadwell
,
G.
,
1976
,
Considerations for Parabolic-Cylindrical Solar Collectors
,
Sandia Laboratories
,
Albuquerque, NM
.
14.
Treadwell
,
G.
, and
Grandjean
,
N.
,
1982
,
Systematic Rotation and Receiver Location Error Effects on Parabolic Trough Annual Performance
,
Sandia National Laboratories
,
Albuquerque, NM
.
15.
Lüpfert
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K.
,
Neumann
,
A.
, and
Schiricke
,
B.
,
2007
, “
Parabolic Trough Optical Performance Analysis Techniques
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
147
152
.
16.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EUROTROUGH-Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
Proceedings of the 11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
Zurich, Switzerland
,
Sept. 4,
pp.
04
06
.
17.
Sansoni
,
P.
,
Fontani
,
D.
,
Francini
,
F.
,
Giannuzzi
,
A.
,
Sani
,
E.
,
Mercatelli
,
L.
, and
Jafrancesco
,
D.
,
2011
, “
Optical Collection Efficiency and Orientation of a Solar Trough Medium-Power Plant Installed in Italy
,”
Renewable Energy
,
36
(
9
), pp.
2341
2347
.
18.
Zhao
,
D.
,
Xu
,
E.
,
Wang
,
Z.
,
Yu
,
Q.
,
Xu
,
L.
, and
Zhu
,
L.
,
2016
, “
Influences of Installation and Tracking Errors on the Optical Performance of a Solar Parabolic Trough Collector
,”
Renewable Energy
,
94
(
1
), pp.
197
212
.
19.
Donga
,
R.
, and
Kumar
,
S.
,
2019
, “
Thermal Performance of Parabolic Trough Collector With Absorber Tube Misalignment and Slope Error
,”
Sol. Energy
,
184
(
1
), pp.
249
259
.
20.
Rodriguez-Sanchez
,
D.
, and
Rosengarten
,
G.
,
2015
, “
Improving the Concentration Ratio of Parabolic Troughs Using a Second-Stage Flat Mirror
,”
Appl. Energy
,
159
(
1
), pp.
620
632
.
21.
Rehman
,
N.
, and
Uzair
,
M.
,
2021
, “
Comparison of North/South-and East-West-Facing Solar Collector Pairs With or Without Reflectors
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
024501
.
22.
Mwesigye
,
A.
, and
Meyer
,
J.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
(
1
), pp.
393
413
.
23.
Gong
,
J.
,
Wang
,
J.
,
Lund
,
P.
,
Hu
,
E.
,
Xu
,
Z.
,
Liu
,
G.
, and
Li
,
G.
,
2020
, “
Improving the Performance of a 2-Stage Large Aperture Parabolic Trough Solar Concentrator Using a Secondary Reflector Designed by Adaptive Method
,”
Renewable Energy
,
152
(
1
), pp.
23
33
.
24.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
New York
.
25.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
26.
Helton
,
J.
, and
Davis
,
F.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
27.
Helton
,
J.
,
Johnson
,
J.
,
Sallaberry
,
C.
, and
Storlie
,
C.
,
2006
, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
(
10
), pp.
1175
1209
.
28.
Rehman
,
N.
,
2018
, “
Optical-Irradiance Ray-Tracing Model for the Performance Analysis and Optimization of a Façade Integrated Solar Collector With a Flat Booster Reflector
,”
Sol. Energy
,
173
(
1
), pp.
1207
1215
.
29.
Rehman
,
N.
,
2019
, “
Optical-Irradiance Ray-Tracing Model for the Performance Analysis and Optimization of a Single Slope Solar Still
,”
Desalination
,
457
(
1
), pp.
22
31
.
30.
Rehman
,
N.
,
Uzair
,
M.
, and
Asif
,
M.
,
2020
, “
Evaluating the Solar Flux Distribution Uniformity Factor for Parabolic Trough Collectors
,”
Renewable Energy
,
157
(
1
), pp.
888
896
.
31.
Rehman
,
N.
,
Uzair
,
M.
, and
Allauddin
,
U.
,
2020
, “
An Optical-Energy Model for Optimizing the Geometrical Layout of Solar Photovoltaic Arrays in a Constrained Field
,”
Renewable Energy
,
149
(
1
), pp.
55
65
.
32.
Rehman
,
N.
, and
Uzair
,
M.
,
2020
, “
Optimizing the Inclined Field for Solar Photovoltaic Arrays
,”
Renewable Energy
,
153
(
1
), pp.
280
289
.
33.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
You do not currently have access to this content.