Abstract

The increasing future energy demands can be met with solar-based devices such as solar air heaters (SAHs) only if the efficiency of these devices is enhanced with suitable design changes. Flow channel design of a SAH is an essential aspect for enhancing its thermohydraulic performance for a wide range of Reynolds numbers. In this article, a systematic approach has been adopted to investigate various nonrectangular channel designs numerically, and results are compared with the conventional rectangular design. The energy input to all designs is kept constant. The channel design that gives the best performance was further investigated by incorporating a sinusoidal wavy absorber having variable wavy roughness parameters. The flow and heat transfer characteristics have been evaluated in terms of friction factor (f) and Nusselt number per unit friction factor (Nu/f), temperature factor (To–Ti)/I, thermal effectiveness (ɛ), and Nusselt number (Nu). The results show that the SAH duct having a semi-ellipse cross section offers the best thermohydraulic performance and has maximum augmentation in the temperature factor of about 10% compared to conventional SAH. Moreover, semi-ellipse SAH with sinusoidal wavy absorber has a maximum value of f/fs and Nu/Nus at A/Dh = 0.12 and λ/Dh = 0.8 for the range of Reynolds numbers used, respectively. Here, A is the amplitude and λ is the wavelength of the absorber plate. New empirical relationships for Nu and f are established as a function of flow and geometric parameters that agree well with numerical results.

References

1.
Ul’yanin
,
Y. A.
,
Kharitonov
,
V. V.
, and
Yurshina
,
D. Y.
,
2018
, “
Forecasting the Dynamics of the Depletion of Conventional Energy Resources
,”
Stud. Russ. Econ. Dev.
,
29
(
2
), pp.
153
160
.
2.
Saha
,
S. N.
, and
Sharma
,
S. P.
,
2016
, “
Analysis of Thermohydraulic Performance of Double Flow v-Corrugated Absorber Solar Air Heater
,”
Int. Energy J.
,
16
(
3
), pp.
131
142
.
3.
Hassan
,
H.
, and
Abo-Elfadl
,
S.
,
2018
, “
Experimental Study on the Performance of Double Pass and Two Inlet Ports Solar air Heater (SAH) at Different Configurations of the Absorber Plate
,”
Renewable Energy
,
116
, pp.
728
740
.
4.
Mahmood
,
A. J.
,
Aldabbagh
,
L. B. Y.
, and
Egelioglu
,
F.
,
2015
, “
Investigation of Single and Double Pass Solar air Heater With Transverse Fins and a Package Wire Mesh Layer
,”
Energy Convers. Manage.
,
89
, pp.
599
607
.
5.
Xia
,
J.
,
Li
,
Y.
,
Li
,
C.
,
Wang
,
Y.
,
Xie
,
L.
,
Miao
,
Y.
,
Zhang
,
Q.
,
Hao
,
C.
, and
Sun
,
G.
,
2020
, “
Performance Evaluation of Different Solar Collectors in Building Cooling, Heating, and Hot Water Supply
,”
J. Renewable Sustainable Energy
,
12
(
4
), p.
043701
.
6.
Jain
,
N.
,
Garg
,
V.
, and
Mathu
,
J.
,
2013
, “
Thermal Performance Analysis of Solar Clothes Dryer
,”
J. Renewable Sustainable Energy
,
5
(
4
), p.
043113
.
7.
Karima
,
M. A.
, and
Hawlade
,
M. N. A.
,
2006
, “
Performance Investigation of Flat Plate, v-Corrugated and Finned Air Collectors
,”
Energy
,
31
(
4
), pp.
452
470
.
8.
Singh
,
S.
, and
Negi
,
B. S.
,
2020
, “
Numerical Thermal Performance Investigation of Phase Change Material Integrated Wavy Finned Single Pass Solar Air Heater
,”
J. Energy Storage
,
32
, p.
102002
.
9.
Lin
,
W.
,
Ren
,
H.
, and
Ma
,
Z.
, “
Mathematical Modelling and Experimental Investigation of Solar Air Collectors With Corrugated Absorbers
,”
Renewable Energy
,
145
, pp.
164
179
.
10.
Pehlivan
,
H.
,
Taymaz
,
I.
, and
İslamoğlu
,
Y.
,
2013
, “
Experimental Study of Forced Convective Heat Transfer in a Different Arranged Corrugated Channel
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
106
111
.
11.
Singh
,
S.
,
2018
, “
Thermal Performance Analysis of Semicircular and Triangular Cross-Sectioned Duct Solar Air Heaters Under External Recycle
,”
J. Energy Storage
,
20
, pp.
316
336
.
12.
Gao
,
W.
,
Lin
,
W.
,
Liu
,
T.
, and
Xia
,
C.
,
2007
, “
Analytical and Experimental Studies on the Thermal Performance of Cross-Corrugated and Flat-Plate Solar Air Heaters
,”
Appl. Energy
,
84
(
4
), pp.
425
441
.
13.
Kareem
,
Z. S.
,
Abdullah
,
S.
,
Lazim
,
T. M.
,
Jaafar
,
M. N. M.
, and
Wahid
,
A. F. A.
,
2015
, “
Heat Transfer Enhancement in Three-Start Spirally Corrugated Tube: Experimental and Numerical Study
,”
Chem. Eng. Sci.
,
134
, pp.
746
757
.
14.
Kumar
,
R.
,
Goe
,
V.
,
Kumar
,
A.
,
Khurana
,
S.
,
Singh
,
P.
, and
Bopch
,
S. B.
,
2018
, “
Numerical Investigation of Heat Transfer and Friction Factor in Ribbed Triangular Duct Solar Air Heater Using Computational Fluid Dynamics (CFD)
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
399
404
.
15.
Nidhul
,
K.
,
Kumar
,
S.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2020
, “
Enhanced Thermo-Hydraulic Performance in a V-Ribbed Triangular Duct Solar Air Heater: CFD and Exergy Analysis
,”
Energy
,
200
, p.
117448
.
16.
Kuma
,
S.
, and
Verma
,
S. K.
,
2020
, “
Three-Dimensional Simulation and Experimental Validation of Solar Air Heater Having Sinusoidal Rib
,”
Energy Sources, Part A.
, pp.
1
19
.
17.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2018
, “
Numerical Investigation on Heat Transfer Enhancement of Solar Air Heater Using Sinusoidal Corrugations on Absorber Plate
,”
Int. J. Mech. Sci.
,
138–139
, pp.
219
228
.
18.
Nidhula
,
K.
,
Yadava
,
A. K.
,
Anisha
,
S.
, and
Arunachala
,
U. C.
,
2020
, “
Efficient Design of an Artificially Roughened Solar Air Heater With Semicylindrical Side Walls: CFD and Exergy Analysis
,”
Sol. Energy
,
207
, pp.
289
304
.
19.
Jain
,
S. K.
,
Agrawal
,
G. D.
,
Misra
,
R.
,
Verma
,
P.
,
Rathore
,
S.
, and
Jamuwa
,
D. K.
,
2019
, “
Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061008
.
20.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Performance Evaluation of Solar Air Heater With Novel Hyperbolic Rib Geometry
,”
Renewable Energy
,
105
, pp.
786
797
.
21.
Purohit
,
S.
,
Madhwesh
,
N.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2019
, “
Heat Transfer Augmentation Using an Innovative Helicoidal Finned Absorber Plate in a Solar Air Heater—A Numerical Study
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031016
.
22.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal Performance Analysis of a Rectangular Longitudinal Finned Solar Air Heater With Semicircular Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
138
(
1
), p.
011006
.
23.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2017
, “
Numerical Analysis of the Influence of Spherical Turbulence Generators on Heat Transfer Enhancement of Flat Plate Solar Air Heater
,”
Energy
,
121
, pp.
616
630
.
24.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2019
, “
Thermo-hydraulic Performance Enhancement of Convex-Concave Natural Convection Solar Air Heaters
,”
Sol. Energy
,
183
, pp.
146
161
.
25.
Mahboub
,
C.
,
Moummi
,
N.
,
Brima
,
A.
, and
Moumm
,
A.
,
2016
, “
Experimental Study of New Solar Air Heater Design
,”
Int. J. Green Energy
,
13
(
5
), pp.
521
529
.
26.
Josyula
,
J.
,
Singh
,
S.
, and
Dhiman
,
P.
, “
Numerical Investigation of a Solar Air Heater Comprising Longitudinally Finned Absorber Plate and Thermal Energy Storage System
,”
J. Renewable Sustainable Energy
,
10
(
5
), p.
055901
.
27.
Ozgen
,
F.
,
Esen
,
M.
, and
Esen
,
H.
,
2009
, “
Experimental Investigation of Thermal Performance of a Double-Flow Solar Air Heater Having Aluminium Cans
,”
Renewable Energy
,
34
(
11
), pp.
2391
2398
.
28.
Abdullah
,
A. S.
,
Al-sood
,
M. M. A.
,
Omarab
,
Z. M.
,
Bek
,
M. A.
, and
Kabee
,
A. E.
,
2018
, “
Performance Evaluation of a New Counter Flow Double Pass Solar Air Heater With Turbulators
,”
Sol. Energy
,
173
, pp.
398
406
.
29.
Kumar
,
A.
,
Akshayveer
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2020
, “
Efficient Designs of Double-Pass Curved Solar air Heaters
,”
Renewable Energy
,
160
, pp.
1105
1118
.
30.
Kumar
,
A.
,
Singh
,
A. P.
,
Akshayveer
, and
Singh
,
O. P.
,
2022
, “
Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater
,”
Energy
,
239
, p.
121886
.
31.
Kumar
,
A.
,
Akshayveer
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Investigations for Efficient Design of a New Counter Flow Double-Pass Curved Solar Air Heater
,”
Renewable Energy
,
185
, pp.
759
770
.
32.
Kumar
,
S.
, and
Kumar
,
A.
,
2021
, “
Thermal Characteristics of the Three Dimensional Turbulent Wall Jet With and Without Sidewalls
,”
Int. J. Therm. Sci.
,
161
, p.
106725
.
33.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.
34.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2018
, “
Performance Enhancement of a Curved Solar air Heater Using CFD
,”
Sol. Energy
,
174
, pp.
556
569
.
35.
Abam
,
F. I.
,
Effiom
,
S. O.
, and
Ohunakin
,
O. S.
,
2016
, “
CFD Evaluation of Pressure Drop Across a 3-D Filter Housing for Industrial Gas Turbine Plants
,”
Front. Energy
,
10
(
2
), pp.
192
202
.
36.
Karwa
,
R.
, and
Srivastava
,
V.
,
2013
, “
Thermal Performance of Solar Air Heater Having Absorber Plate With v-Down Discrete Rib Roughness for Space-Heating Applications
,”
J. Renewable Energy
,
13
, p.
151578
.
37.
Singh
,
A. P.
,
Akshayveer
,
Kumar
,
A.
, and
Singh
,
O. P.
,
2020
, “
Efficient Design of Curved Solar Air Heater Integrated With Semi-Down Turbulators
,”
Int. J. Therm. Sci.
,
152
, p.
106304
.
38.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2011
, “
Heat Transfer and Friction Factor of Discrete V-Down Rib Roughened Solar Air Heater Ducts
,”
Energy
,
36
(
8
), pp.
5053
5064
.
39.
Menasria
,
F.
,
Zedairia
,
M.
, and
Moummi
,
A.
,
2017
, “
Numerical Study of Thermohydraulic Performance of Solar Air Heater Duct Equipped With Novel Continuous Rectangular Baffles With High Aspect Ratio
,”
Energy
,
133
, pp.
593
608
.
40.
Menni
,
Y.
,
Ghazvini
,
M.
,
Ameur
,
H.
,
Kim
,
M.
,
Ahmadi
,
H.
, and
Sharifpur
,
M.
,
2020
, “
Combination of Baffling Technique and High-Thermal Conductivity Fluids to Enhance the Overall Performances of Solar Channels
,”
Eng. Comput.
,
38
(
5
), pp.
1
22
.
41.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1016
1039
.
42.
Gawande
,
V.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
43.
Chamoli
,
S.
,
Lua
,
R.
,
Xie
,
J.
, and
Yu
,
P.
,
2018
, “
Numerical Study on Flow Structure and Heat Transfer in a Circular Tube Integrated With Novel Anchor Shaped Inserts
,”
Appl. Therm. Eng.
,
135
, pp.
304
324
.
You do not currently have access to this content.