Abstract

Concentrated solar-thermal power towers are increasingly migrating toward sand-based particle receiver designs to improve thermal efficiency and reach temperatures above 1000 °C for air Brayton power cycles and supercritical CO2 power cycles. However, utilizing sand affords complexities in modeling particle flow characteristics due to variable geometric shape, size, and composition. Thus, the objective of this study is to model the particle flow characteristics of sand through variable angled chevron shapes and receiver hoppers to help formulate robust modeling for flow dynamics. Treating the chevrons as an array of apertures, a novel method of calculating sand particle mass flowrate across angled apertures and surfaces is developed. Employing high-speed photography and particle imaging velocimetry techniques, our results incorporate the impact of effective angles upon velocity, residence time, and breakage profiles of falling sand particles. This study determines that a Beverloo equation incorporating effective angles for velocity and aperture size effectively predicts mass flowrate through chevrons, which can serve as a reference for future particulate flow modeling in this field. Furthermore, increasing hopper and chevron tip angles resulted in a more significant decrease in particle diameter and curtain opacity after sand flow trials.

References

1.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
, et al
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Proceedings of the SolarPACES 2013 International Conference
,
Las Vegas, NV
,
Sept. 17–20, 2013
, Vol.
49
, pp.
398
407
.
2.
Ho
,
C.
,
Christian
,
J.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Jeter
,
S.
,
Golob
,
M.
,
Abdel-Khalik
,
S.
,
Nguyen
,
C.
, and
Al-Ansary
,
H.
,
2016
, “
On-Sun Testing of an Advanced Falling Particle Receiver System
,”
Proceedings of the SolarPACES 2015 International Conference
,
Cape Town, South Africa
,
Oct. 13–16
, Vol.
1734
, p.
030022
.
3.
Wu
,
W.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Uhlig
,
R.
, and
Ritz-Paal
,
R.
,
2014
, “
Proof of Concept Test of a Centrifugal Particle Receiver
,”
Proceedings of the SolarPACES 2013 International Conference
,
Las Vegas, NV
,
Sept. 17–20
, Vol.
49
, pp.
560
568
.
4.
Morris
,
A. B.
,
Ma
,
Z.
,
Pannala
,
S.
, and
Hrenya
,
C. M.
,
2016
, “
Simulations of Heat Transfer to Solid Particles Flowing Through an Array of Heated Tubes
,”
Sol. Energy
,
130
, pp.
101
115
.
5.
Gal
,
A. L.
,
Grange
,
B.
,
Tessonneaud
,
M.
,
Perez
,
A.
,
Escape
,
C.
,
Sans
,
J.
, and
Flamant
,
G.
,
2019
, “
Thermal Analysis of Fluidized Particle Flows in A Finned Tube Solar Receiver
,”
Sol. Energy
,
191
, pp.
19
33
.
6.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
, and
Singer
,
C.
,
2015
, “
Cost Analysis of Different Operation Strategies for Falling Particle Receivers
,”
Proceedings of the ASME 2015 9th International Conference on Energy Sustainability Collocated With the ASME 2015 Power Conference; the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials
,
San Diego, CA
,
June 28–July 2
, p.
V001T05A010
, ASME Paper No: ES2015-49354.
7.
Christian
,
J.
, and
Ho
,
J.
,
2014
, “
Alternative Designs of a High Efficiency, North-Facing, Solid Particle Receiver
,”
Proceedings of the SolarPACES 2013 International Conference
,
Las Vegas, NV
,
Sept. 17–20
, Vol.
49
, pp.
314
323
.
8.
Khalsa
,
S.
,
Christian
,
J.
,
Kolb
,
G.
,
Roger
,
M.
,
Amsbeck
,
L.
,
Ho
,
C.
,
Siegel
,
N.
, and
Moya
,
A.
,
2012
, “
CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers
,”
Proceedings of the ASME 2011 5th International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10, 2011
, pp.
687
693
, ASME Paper No: ES2011-54430.
9.
Iniesta
,
A. C.
,
Diago
,
M.
,
Delclos
,
T.
,
Falcoz
,
Q.
,
Shamim
,
T.
, and
Calvet
,
N.
,
2014
, “
Gravity-Fed Combined Solar Receiver/Storage System Using Sand Particles as Heat Collector, Heat Transfer and Thermal Energy Storage Media
,”
Proceedings of the SolarPACES 2014 International Conference
,
Beijing, China
,
Sept. 16–19, 2015
, Vol.
69
, pp.
802
811
.
10.
Siegel
,
N.
,
Kolb
,
G.
,
Kim
,
K.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
,
2009
, “
Solid Particle Receiver Flow Characterization Studies
,”
Proceedings of the ASME 2007 Energy Sustainability Conference
,
Long Beach, CA
,
July 27–30, 2007
, pp.
877
883
, ASME Paper No: ES2007-36118.
11.
Al-Ansary
,
H.
,
El-Leathy
,
A.
,
Alswaiyd
,
A.
,
Alaqel
,
S.
,
Saleh
,
N.
,
Saeed
,
R.
,
Al-Suhaibani
,
Z.
,
Danish
,
S.
,
Djajadiwinata
,
E.
, and
Jeter
,
S.
,
2020
, “
Study of the Optimum Discrete Structure Configuration in Obstructed Flow Particle Heating Receivers
,”
Proceedings of the SolarPACES 2019 International Conference
,
Daegu, South Korea
,
Oct. 1–4, 2019
, Vol.
2303
, p.
03000
.
12.
Breeze
,
P.
,
2016
, “Chapter Four—Parabolic Trough and Fresnel Reflector Solar Power Plants,”
Solar Power Generation
,
P
Breeze
, ed.,
Academic Press
,
Cambridge, MA
, pp.
25
34
.
13.
Joardder
,
M. U. H.
,
Halder
,
P. K.
,
Rahim
,
M. A.
, and
Masud
,
M. H.
,
2017
, “Chapter Eight—Solar Pyrolysis: Converting Waste Into Asset Using Solar Energy,”
Clean Energy for Sustainable Development
,
MG
Rasul
,
AK
Azad
, and
SC
Sharma
, eds.,
Academic Press
,
Cambridge, MA
, pp.
213
235
.
14.
Khosravi
,
A.
,
Malekan
,
M.
,
Pabon
,
J. J. G.
, and
Assad
,
M. E. H.
,
2021
, “Chapter 5—Solar Power Tower System,”
Design and Performance Optimization of Renewable Energy Systems
,
MA
Rosen
, and
MEH
Assad
, eds.,
Academic Press
,
Cambridge, MA
, pp.
61
83
.
15.
Breeze
,
P.
,
2016
, “Chapter 5—Solar Towers,”
Solar Power Generation
,
P
Breeze
, ed.,
Academic Press
,
Cambridge, MA
, pp.
35
40
.
16.
Karatairi
,
E.
, and
Ambrosini
,
A.
,
2018
, “
Improving the Efficiency of Concentrating Solar Power Systems
,”
MRS Bull.
,
43
(
12
), pp.
920
921
.
17.
Evans
,
G.
,
Houf
,
W.
,
Greif
,
R.
, and
Crowe
,
C.
,
1987
, “
Gas-Particle Flow Within a High Temperature Solar Cavity Receiver Including Radiation Heat Transfer
,”
ASME J. Sol. Energy Eng.
,
109
(
2
), pp.
134
142
.
18.
Project Profile: High-Temperature Falling-Particle Receiver
,” Energy.gov, https://www.energy.gov/eere/solar/project-profile-high-temperature-falling-particle-receiver, Accessed October 9, 2021.
19.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
20.
Beverloo
,
W. A.
,
Leniger
,
H. A.
, and
Velde
,
J.
,
1961
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
15
(
3–4
), pp.
260
269
.
21.
Kähler
,
C. J.
,
Scharnowski
,
S.
, and
Cierpka
,
C.
,
2012
, “
On the Resolution Limit of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
6
), pp.
1629
1639
.
22.
Chong
,
Z. Z.
,
Tor
,
S. B.
,
Gañán-Calvo
,
A. M.
,
Chong
,
Z. J.
,
Loh
,
N. H.
,
Nguyen
,
N.
, and
Tan
,
S. H.
,
2016
, “
Automated Droplet Measurement (ADM): An Enhanced Video Processing Software for Rapid Droplet Measurements
,”
Microfluid. Nanofluid.
,
20
(
4
), p.
66
.
23.
Thielicke
,
W.
, and
Sonntag
,
R.
,
2021
, “
Particle Image Velocimetry for MATLAB: Accuracy and Enhanced Algorithms in PIVlab
,”
J. Open Res. Softw.
,
9
(
1
), p.
12
.
24.
Houf
,
W.G.
,
Greif
,
R.
, and
Crowe
,
C.
,
1985
, “
Numerical Modeling of a Solid Particle Solar Central Receiver
,” Albuquerque, NM, Sandia Report No. SAND85-8249, https://www.osti.gov/servlets/purl/6315392
25.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2189
2195
.
You do not currently have access to this content.