Abstract

Comprising an eco-friendly blueprint, absorption refrigeration systems have attracted a lot of interest as they can use biomass, solar and geothermal energy sources which can mitigate climate change. The current study presents a methodology based on energy and analysis for solar-driven single-effect absorption refrigeration systems, which offer a 50-kW cooling capacity. This study proposes a new mixture ratio of LiBr + LiCl (mass ratio of 2:1)/H2O solution and compared it to LiBr/H2O thermodynamically. Based on the climate data of Kocaeli province in Turkey, an evacuated tube collector is employed to benefit from solar energy to meet the generator heat load of the system. Although at an evaporator temperature of 5 °C, enhanced thermodynamic performance is evident with the use of the LiBr + LiCl/H2O system, and a diminished solar collector area is required compared to the system utilizing LiBr/H2O; there is a level of attrition relating to the impact of the former with a single degree rise in evaporator temperature. However, this remained at a greater value than for the latter system. The final results pointed out that LiBr + LiCl/H2O has a 48.93% lower circulation ratio, 8.81% higher coefficient of performance (COP) of chiller, 8.88% higher solar COP, 8.96% higher exergy efficiency of chiller, 8.90% higher exergy efficiency of solar-driven system, 8.92% lower solar collector area, and 8.91% lower storage tank volume than LiBr/H2O system in the investigated operating temperature ranges. The final results of the present study can be safely tested in the experimental design of single-effect absorption chillers.

References

1.
Zhai
,
C.
, and
Wu
,
W.
,
2022
, “
Energetic, Exergetic, Economic, and Environmental Analysis of Microchannel Membrane-Based Absorption Refrigeration System Driven by Various Energy Sources
,”
Energy
,
239
(
Part B
), pp.
1
22
.
2.
Altun
,
A. F.
, and
Kilic
,
M.
,
2020
, “
Economic Feasibility Analysis With the Parametric Dynamic Simulation of a Single Effect Solar Absorption Cooling System for Various Climatic Regions in Turkey
,”
Renewable Energy
,
152
, pp.
75
93
.
3.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Rehman
,
S.
,
Saat
,
A.
, and
Ani
,
F. N.
,
2021
, “
Economic Analysis of a Novel Solar-Assisted Air Conditioning System With Integral Absorption Energy Storage
,”
J. Cleaner Prod.
,
291
, pp.
1
15
.
4.
Uçkan
,
İ
, and
Yousif
,
A. A.
,
2021
, “
Investigation of the Effect of Various Solar Collector Types on a Solar Absorption Cooling System
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
43
(
7
), pp.
875
892
.
5.
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Bruel
,
P.
,
Mourad
,
Y.
, and
Zeraouli
,
Y.
,
2015
, “
Solar Driven Cooling Systems: An Updated Review
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
159
181
.
6.
Shirazi
,
A.
,
Taylor
,
R. A.
,
White
,
S. D.
, and
Morrison
,
G. L.
,
2016
, “
A Systematic Parametric Study and Feasibility Assessment of Solar-Assisted Single-Effect, Double-Effect, and Triple-Effect Absorption Chillers for Heating and Cooling Applications
,”
Energy Convers. Manage.
,
114
, pp.
258
277
.
7.
Shirazi
,
A.
,
Taylor
,
R. A.
,
Morrison
,
G. L.
, and
White
,
S. D.
,
2018
, “
Solar-Powered Absorption Chillers: A Comprehensive and Critical Review
,”
Energy Convers. Manage.
,
171
, pp.
59
81
.
8.
Sheikhani
,
H.
,
Barzegarian
,
R.
,
Heydari
,
A.
,
Kianifar
,
A.
,
Kasaeian
,
A.
,
Gróf
,
G.
, and
Mahian
,
O.
,
2018
, “
A Review of Solar Absorption Cooling Systems Combined With Various Auxiliary Energy Devices
,”
J. Therm. Anal. Calorim.
,
134
(
3
), pp.
2197
2212
.
9.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Exergetic, Energetic and Financial Evaluation of a Solar Driven Absorption Cooling System With Various Collector Types
,”
Appl. Therm. Eng.
,
102
, pp.
749
759
.
10.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Exergetic and Energetic Comparison of LiCl-H2O and LiBr-H2O Working Pairs in a Solar Absorption Cooling System
,”
Energy Convers. Manage.
,
123
, pp.
453
461
.
11.
Tzivanidis
,
C.
, and
Bellos
,
E.
,
2016
, “
The Use of Parabolic Trough Collectors for Solar Cooling—A Case Study for Athens Climate
,”
Case Stud. Therm. Eng.
,
8
, pp.
403
413
.
12.
El-Shaarawi
,
M. A. I.
, and
Al-Ugla
,
A. A.
,
2016
, “
Hybrid Storage Designs for Continuous Operation of Solar-Powered LiBr–Water Absorption Air-Conditioning
,”
Int. J. Energy Res.
,
40
(
6
), pp.
791
805
.
13.
Agrouaz
,
Y.
,
Bouhal
,
T.
,
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
, and
Zeraouli
,
Y.
,
2017
, “
Energy and Parametric Analysis of Solar Absorption Cooling Systems in Various Moroccan Climates
,”
Case Stud. Therm. Eng.
,
9
, pp.
28
39
.
14.
Sokhansefat
,
T.
,
Mohammadi
,
D.
,
Kasaeian
,
A.
, and
Mahmoudi
,
A. R.
,
2017
, “
Simulation and Parametric Study of a 5-ton Solar Absorption Cooling System in Tehran
,”
Energy Convers. Manage.
,
148
, pp.
339
351
.
15.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Energetic and Financial Analysis of Solar Cooling Systems With Single Effect Absorption Chiller in Various Climates
,”
Appl. Therm. Eng.
,
126
, pp.
809
821
.
16.
Asadi
,
J.
,
Amani
,
P.
,
Amani
,
M.
,
Kasaeian
,
A.
, and
Bahiraei
,
M.
,
2018
, “
Thermo-economic Analysis and Multi-objective Optimization of Absorption Cooling System Driven by Various Solar Collectors
,”
Energy Convers. Manage.
,
173
, pp.
715
727
.
17.
Pandya
,
B.
,
Kumar
,
V.
,
Matawala
,
V.
, and
Patel
,
J.
,
2018
, “
Thermal Comparison and Multi-objective Optimization of Single-Stage Aqua-Ammonia Absorption Cooling System Powered by Different Solar Collectors
,”
J. Therm. Anal. Calorim.
,
133
(
3
), pp.
1635
1648
.
18.
Zaidan
,
M. H.
,
Khalaf
,
H. J.
, and
Ahmed
,
B. A.
,
2018
, “
Thermal Analysis of a Solar Absorption Cooling System With Hot and Cold Storage Tanks
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
50
, pp.
67
80
.
19.
Hirmiz
,
R.
,
Lightstone
,
M. F.
, and
Cotton
,
J. S.
,
2018
, “
Performance Enhancement of Solar Absorption Cooling Systems Using Thermal Energy Storage With Phase Change Materials
,”
Appl. Energy
,
223
, pp.
11
29
.
20.
Modi
,
N.
,
Pandya
,
B.
,
Hosseinpour
,
J.
, and
Amidpour
,
M.
,
2019
, “
Thermodynamic and Economic Contrast of an Ionic Solution Operated Solar Absorption Cooling System With LiBr + H2O Pair for a Business Building in India
,”
Int. J. Air-Cond. Refrig.
,
27
(
4
), p.
1950035
.
21.
Salameh
,
W.
,
Nuwayhid
,
R.
,
Al Shaer
,
A.
, and
Gad El-Rab
,
M.
,
2019
, “
Preliminary Assessment of Parabolic Solar Trough-Driven Ammonia-Water Absorption Cooling System for Beirut
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
44
(
1
), pp.
2030
2044
.
22.
Boero
,
A.
, and
Agyenim
,
F.
,
2020
, “
Modeling and Simulation of a Small-Scale Solar-Powered Absorption Cooling System in Three Cities With a Tropical Climate
,”
Int. J. Low Carbon Technol.
,
15
(
1
), pp.
1
16
.
23.
Bellos
,
E.
,
Chatzovoulos
,
I.
, and
Tzivanidis
,
C.
,
2021
, “
Yearly Investigation of a Solar-Driven Absorption Refrigeration System With Ammonia-Water Absorption Pair
,”
Ther. Sci. Eng. Prog.
,
23
, pp.
1
16
.
24.
Huld
,
T.
,
Müller
,
R.
, and
Gambardella
,
A.
,
2012
, “
A New Solar Radiation Database for Estimating PV Performance in Europe and Africa
,”
Sol. Energy
,
86
(
6
), pp.
1803
1815
.
25.
You
,
D.
, and
Metghalchi
,
H.
,
2022
, “
Analysis of Aqueous Lithium Bromide Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012105
.
26.
Ansari
,
K. A.
,
Azhar
,
M.
, and
Altamush
,
S. M.
,
2021
, “
Exergy Analysis of Single-Effect Vapor Absorption System Using Design Parameters
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062105
.
27.
Singh
,
G.
, and
Das
,
R.
,
2021
, “
Experimental Study on a New Small-Scale Absorption System: Response Surface and Inverse Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092103
.
28.
Modi
,
N.
,
Pandya
,
B.
, and
Patel
,
J.
,
2020
, “
Investigation of an Energy Source Temperature for NH3 + NaSCN and NH3 + LiNO3 Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104502
.
29.
Colorado-Garrido
,
D.
,
2020
, “
Advanced Exergetic Analysis of a Double-Effect Series Flow Absorption Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104503
.
30.
Arabi
,
M.
, and
Dehghani
,
M. R.
,
2015
, “
Measurement of Solubility and Density of Water + Lithium Bromide + Lithium Chloride and Water + Lithium Bromide + Sodium Formate Systems
,”
Int. J. Refrig.
,
56
, pp.
99
104
.
31.
Somers
,
C.
,
Mortazavi
,
A.
,
Hwang
,
Y.
,
Radermacher
,
R.
,
Rodgers
,
P.
, and
Al-Hashimi
,
S.
,
2011
, “
Modeling Water/Lithium Bromide Absorption Chillers in ASPEN Plus
,”
Appl. Energy
,
88
(
11
), pp.
4197
4205
.
32.
Wang
,
Y.
,
Wang
,
C.
, and
Feng
,
X.
,
2017
, “
Optimal Match Between Heat Source and Absorption Refrigeration
,”
Comput. Chem. Eng.
,
102
, pp.
268
277
.
33.
Anand
,
D. K.
,
Lindler
,
K. W.
,
Kennish
,
W. J.
, and
Schweitzer
,
S.
,
1984
, “
Second Law Analysis of Solar Powered Absorption Cooling Cycles and Systems
,”
ASME J. Sol. Energy Eng.
,
106
(
3
), pp.
291
298
.
34.
Modi
,
N.
,
Pandya
,
B.
,
Kumar
,
V.
, and
Patel
,
J.
,
2020
, “
Dynamic Performance Investigation of Single-Effect NH3 + LiNO3 and NH3 + NaSCN Solar Cooling Cycles: A Case Study for Western Indian Climate
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051010
.
35.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2018
, “
Comparative Performance Study and Advanced Exergy Analysis of Novel Vapor Compression-Absorption Integrated Refrigeration System
,”
Energy Convers. Manage.
,
172
, pp.
81
97
.
36.
Jing
,
Y.
,
Li
,
Z.
,
Liu
,
L.
, and
Lu
,
S.
,
2018
, “
Exergoeconomic Assessment of Solar Absorption and Absorption–Compression Hybrid Refrigeration in Building Cooling
,”
Entropy
,
20
(
2
), pp.
1
22
.
37.
Jain
,
V.
, and
Colorado
,
D.
,
2020
, “
Thermoeconomic and Feasibility Analysis of Novel Transcritical Vapor Compression-Absorption Integrated Refrigeration System
,”
Energy Convers. Manage.
,
224
, pp.
1
15
.
38.
Aghaziarati
,
Z.
, and
Aghdam
,
A. H.
,
2021
, “
Thermoeconomic Analysis of a Novel Combined Cooling, Heating and Power System Based on Solar Organic Rankine Cycle and Cascade Refrigeration Cycle
,”
Renewable Energy
,
164
, pp.
1267
1283
.
39.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Symeou
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
Energetic, Exergetic and Financial Evaluation of a Solar Driven Absorption Chiller-A Dynamic Approach
,”
Energy Convers. Manage.
,
137
, pp.
34
48
.
40.
Sharifi
,
S.
,
Heravi
,
F. N.
,
Shirmohammadi
,
R.
,
Ghasempour
,
R.
,
Petrakopoulou
,
F.
, and
Romeo
,
L. M.
,
2020
, “
Comprehensive Thermodynamic and Operational Optimization of a Solar-Assisted LiBr/Water Absorption Refrigeration System
,”
Energy Rep.
,
6
, pp.
2309
2323
.
41.
Rad
,
E. A.
, and
Davoodi
,
V.
,
2021
, “
Thermo-Economic Evaluation of a Hybrid Solar-Gas Driven and Air-Cooled Absorption Chiller Integrated With Hot Water Production by a Transient Modeling
,”
Renewable Energy
,
163
, pp.
1253
1264
.
42.
Dincer
,
İ
, and
Rosen
,
M. A.
,
2013
,
Exergy: Energy, Environment and Sustainable Development
,
Elsevier
,
the Netherlands
.
43.
Pandya
,
B.
,
Modi
,
N.
,
Kumar
,
V.
,
Upadhyai
,
R.
, and
Patel
,
J.
,
2019
, “
Performance Comparison and Optimal Parameters Evaluation of Solar-Assisted NH3-NaSCN and NH3-LiNO3 Type Absorption Cooling System
,”
J. Therm. Anal. Calorim.
,
135
(
6
), pp.
3437
3452
.
44.
Nikbakhti
,
R.
, and
Iranmanesh
,
A.
,
2021
, “
Potential Application of a Novel Integrated Adsorption-Absorption Refrigeration System Powered With Solar Energy in Australia
,”
Appl. Therm. Eng.
,
194
, pp.
1
19
.
45.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Parametric Analysis and Optimization of a Cooling System With Ejector-Absorption Chiller Powered by Solar Parabolic Trough Collectors
,”
Energy Convers. Manage.
,
168
, pp.
329
342
.
46.
Karim
,
S. H. T.
,
Tofiq
,
T. A.
,
Shariati
,
M.
,
Rad
,
H. N.
, and
Ghasemi
,
A.
,
2021
, “
4E Analyses and Multi-Objective Optimization of a Solar-Based Combined Cooling, Heating, and Power System for Residential Applications
,”
Energy Rep.
,
7
, pp.
1780
1797
.
47.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Pavlovic
,
S.
, and
Stefanovic
,
V.
,
2017b
, “
Thermodynamic Investigation of LiCl-H2O Working Pair in a Double Effect Absorption Chiller Driven by Parabolic Trough Collectors
,”
Ther. Sci. Eng. Prog.
,
3
, pp.
75
87
.
You do not currently have access to this content.