Abstract

This work aims at investigating the impact of an Earth-Air Heat eXchanger (EAHX) on the thermal comfort when it is added to a natural nighttime ventilation for a house located in Marrakech (Morocco), which is characterized by a hot semi-arid climate. The thermal behavior of the house associated with this cooling combination was assessed using dynamic simulations. Two transient models are used, the well-validated Type 460 model of trnsys software (Transient System Simulation) for the EAHX and a separate trnsys-based model for the building, recently validated using an onsite long-term monitoring of the house under study in the present work. Many configurations of the house ranging from the building without any passive technique to the building with envelope thermal insulation connected with the EAHX combined with natural nighttime ventilation strategy have been investigated. The results showed that the nighttime ventilation strategy alone keeps the operative temperature lower than the convenient 28 °C for 92% of the time during the cooling period. On the other hand, when the EAHX alone is used, the operative temperature is lower than 28 °C during 57% of the time during the hot season. Hence, it was concluded that the passive nighttime ventilation alone leads already to a great thermal comfort improvement; however, its combination with an additional EAHX system results in convenient temperatures lower than 28 °C for 99% of time during the complete cooling period. It is found also that by applying nighttime ventilation, the air blowing flowrate can be reduced by up to three air change per hour while keeping the same EAHX’ parameters.

References

1.
IEA
,
2015
, “
International Energy Agency, Data and Statistics
”.
2.
Faraj
,
K.
,
Khaled
,
M.
,
Faraj
,
J.
,
Hachem
,
F.
, and
Castelain
,
C.
,
2020
, “
Phase Change Material Thermal Energy Storage Systems for Cooling Applications in Buildings: A Review
,”
Renew. Sustain. Energy Rev.
,
119
, p.
109579
.
3.
Agrawal
,
K. K.
,
Misra
,
R.
,
Agrawal
,
D. G.
,
Bhardwaj
,
M.
, and
Doraj Kamal
,
J.
,
2019
, “
The State of Art on the Applications, Technology Integration, and Latest Research Trends of Earth-Air-Heat Exchanger System
,”
Geothermics
,
82
, pp.
34
50
.
4.
Belussi
,
L.
,
Barozzi
,
B.
,
Bellazzi
,
A.
,
Danza
,
L.
,
Devitofrancesco
,
A.
,
Fanciulli
,
C.
,
Ghellere
,
M.
, et al
,
2019
, “
A Review of Performance of Zero Energy Buildings and Energy Efficiency Solutions
,”
J. Build. Eng.
,
25
, p.
100772
.
5.
Bhamare
,
D. K.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2019
, “
Passive Cooling Techniques for Building and Their Applicability in Different Climatic Zones—The State of Art
,”
Energy Build.
,
198
, pp.
467
490
.
6.
Sabzi
,
D.
,
Haseli
,
P.
,
Jafarian
,
M.
,
Karimi
,
G.
, and
Taheri
,
M.
,
2015
, “
Investigation of Cooling Load Reduction in Buildings by Passive Cooling Options Applied on Roof
,”
Energy Build.
,
109
, pp.
135
142
.
7.
Jaguemont
,
J.
,
Omar
,
N.
,
Van den Bossche
,
P.
, and
Mierlo
,
J.
,
2018
, “
Phase-Change Materials (PCM) for Automotive Applications: A Review
,”
Appl. Therm. Eng.
,
132
, pp.
308
320
.
8.
Oropeza-perez
,
I.
, and
Østergaard
,
P. A.
,
2018
, “
Active and Passive Cooling Methods for Dwellings : A Review
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
531
544
.
9.
Belatrache
,
D.
,
Bentouba
,
S.
, and
Bourouis
,
M.
,
2019
, “
Parametric Study of an Earth-Air Heat Exchanger Assisted by a Green Wall for Passive Cooling in Hot Climates
,”
Glob. J. Earth Sci. Eng.
,
6
(
1
), pp.
1
8
.
10.
Bisoniya
,
T. S.
,
Kumar
,
A.
, and
Baredar
,
P.
,
2015
, “
Energy Metrics of Earth–air Heat Exchanger System for Hot and Dry Climatic Conditions of India
,”
Energy Build.
,
86
, pp.
214
221
.
11.
Benhammou
,
M.
,
Draoui
,
B.
, and
Hamouda
,
M.
,
2017
, “
Improvement of the Summer Cooling Induced by an Earth-to-Air Heat Exchanger Integrated in a Residential Building Under hot and Arid Climate
,”
Appl. Energy
,
208
, pp.
428
445
.
12.
Rantala
,
J.
,
2005
, “
A new Method to Estimate the Periodic Temperature Distribution Underneath a Slab-on-Ground Structure
,”
Build. Environ.
,
40
(
6
), pp.
832
840
.
13.
Ouzzane
,
M.
,
Eslami-Nejad
,
P.
,
Badache
,
M.
, and
Aidoun
,
Z.
,
2015
, “
New Correlations for the Prediction of the Undisturbed Ground Temperature
,”
Geothermics
,
53
, pp.
379
384
.
14.
Bisoniya
,
T. S.
,
Kumar
,
A.
, and
Baredar
,
P.
,
2014
, “
Study on Calculation Models of Earth-Air Heat Exchanger Systems
,”
J. Energy
,
2014
, pp.
1
15
, Article ID 859286.
15.
Ozgener
,
O.
,
Ozgener
,
L.
, and
Tester
,
J. W.
,
2013
, “
A Practical Approach to Predict Soil Temperature Variations for Geothermal (Ground) Heat Exchangers Applications
,”
Int. J. Heat Mass Transf.
,
62
, pp.
473
480
.
16.
Florides
,
G.
, and
Kalogirou
,
S.
,
2007
, “
Ground Heat Exchangers—A Review of Systems, Models and Applications
,”
Renew. Energy
,
32
(
15
), pp.
2461
2478
.
17.
Agrawal
,
K. K.
,
Das Agrawal
,
G.
,
Misra
,
R.
,
Bhardwaj
,
M.
, and
Jamuwa
,
D. K.
,
2018
, “
A Review on Effect of Geometrical, Flow and Soil Properties on the Performance of Earth Air Tunnel Heat Exchanger
,”
Energy Build.
,
176
, pp.
120
138
.
18.
Yusof
,
T. M.
,
Ibrahim
,
H.
,
Azmi
,
W. H.
, and
Rejab
,
M. R. M.
,
2018
, “
The Thermal Characteristics and Performance of a Ground Heat Exchanger for Tropical Climates
,”
Renew. Energy
,
121
, pp.
528
538
.
19.
Hamdi
,
O.
,
Brima
,
A.
,
Moummi
,
N.
, and
Nebbar
,
H.
,
2018
, “
Experimental Study of the Performance of an Earth to Air Heat Exchanger Located in Arid Zone During the Summer Period
,”
Int. J. Heat Technol.
,
36
(
4
), pp.
1323
1329
.
20.
Ben Jmaa Derbel
,
H.
, and
Kanoun
,
O.
,
2010
, “
Investigation of the Ground Thermal Potential in Tunisia Focused Towards Heating and Cooling Applications
,”
Appl. Therm. Eng. J.
,
30
(
10
), pp.
1091
1100
.
21.
Hsu
,
C.
,
Chiang
,
Y.
,
Chien
,
Z.
, and
Chen
,
S.
,
2018
, “
Energy & Buildings Investigation on Performance of Building-Integrated Earth-Air Heat Exchanger
,”
Energy Build.
,
169
, pp.
444
452
.
22.
Chiesa
,
G.
,
2018
, “
EAHX—Earth-to-Air Heat Exchanger: Simplified Method and KPI for Early Building Design Phases
,”
Build. Environ.
,
144
, pp.
142
158
.
23.
Mahach
,
H.
, and
Benhamou
,
B.
,
2021
, “
Extensive Parametric Study of Cooling Performance of an Earth-to-Air Heat Exchanger in Hot Semi-arid Climate
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031006
.
24.
Mahach
,
H.
, and
Benhamou
,
B.
,
2018
, “
Cooling Performance of an Earth to Air Heat Exchanger in Hot Semi-Arid Climate Parametric Study
,”
Proceedings of the 6th International Renewable and Sustainable Energy Conference (IRSEC’18)
,
Rabat Morocco
,
Dec. 5–8
, pp.
1
5
.
25.
Li
,
H.
,
Ni
,
L.
,
Liu
,
G.
,
Zhao
,
Z.
, and
Yao
,
Y.
,
2017
, “
Feasibility Study on Applications of an Earth-Air Heat Exchanger (EAHE) for Preheating Fresh Air in Severe Cold Regions
,”
Renew. Energy
,
133
, pp.
1268
1284
.
26.
Benrachi
,
N.
,
Ouzzane
,
M.
,
Smaili
,
A.
,
Lamarche
,
L.
,
Badache
,
M.
, and
Maref
,
W.
,
2018
, “
Numerical Parametric Study of a New Earth-Air Heat Exchanger Configuration Designed for Hot and Arid Climates
,”
Int. J. Green Energy
,
17
(
2
), pp.
115
126
.
27.
Akhtari
,
M. R.
,
Shayegh
,
I.
, and
Karimi
,
N.
,
2020
, “
Techno-economic Assessment and Optimization of a Hybrid Renewable Earth—Air Heat Exchanger Coupled With Electric Boiler, Hydrogen, Wind and PV Configuration
,”
Renew. Energy
,
148
, pp.
839
851
.
28.
Haghighi
,
A. P.
, and
Maerefat
,
M.
,
September 2015
, “
Design Guideline for Application of Earth-To-Air Heat Exchanger Coupled With Solar Chimney as a Natural Heating System
,”
Int. J. Low-Carbon Technol.
,
10
(
3
), pp.
294
304
.
29.
Jakhar
,
O. P.
,
Sharma
,
C. S.
, and
Kukana
,
R.
,
2018
, “
Experimental Temperature Analysis of Simple & Hybrid Earth Air Tunnel Heat Exchanger in Series Connection at Bikaner Rajasthan India
,”
AIP Conf. Proc.
,
1953
(
100089
), pp.
1
5
.
30.
Benhammou
,
M.
,
Draoui
,
B.
,
Zerrouki
,
M.
, and
Marif
,
Y.
,
2015
, “
Performance Analysis of an Earth-to-Air Heat Exchanger Assisted by a Wind Tower for Passive Cooling of Buildings in Arid and Hot Climate
,”
Energy Convers. Manag.
,
91
, pp.
1
11
.
31.
Jakhar
,
S.
,
Soni
,
M. S.
, and
Boehm
,
R. F.
,
June 2018
, “
Thermal Modeling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031011
.
32.
Argiriou
,
A. A.
,
Lykoudis
,
S. P.
,
Balaras
,
C. A.
, and
Asimakopoulos
,
D. N.
,
February 2004
, “
Experimental Study of a Earth-to-Air Heat Exchanger Coupled to a Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
620
625
.
33.
Ozgener
,
O.
, and
Ozgener
,
L.
,
November 2012
, “
Three Cooling Seasons Monitoring of Exergetic Performance Analysis of an EAHE Assisted Solar Greenhouse Building
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021007
.
34.
Ghaith
,
F. A.
, and
Razzaq
,
H.
,
2018
, “
Thermal Performance of Earth-air Heat Exchanger Systems for Cooling Applications in Residential Buildings
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 6A: Energy
, ASME,
Pittsburgh, PA
,
Nov. 9–15
, V06AT08A043.
35.
Kaushal
,
M.
,
2017
, “
Geothermal Cooling/Heating Using Ground Heat Exchanger for Various Experimental and Analytical Studies : Comprehensive Review
,”
Energy Build.
,
139
, pp.
634
652
.
36.
Mahach
,
H.
, and
Benhamou
,
B.
,
2021
, “
Study of the Design of an Earth-to-Air Heat Exchanger for Low Energy Air Cooling and Heating of a School in Desert Climate
,”
AIP Conf. Proc.
,
2345
(
020045
), pp.
1
9
.
37.
Lafqir
,
F.-E.
,
Sobhy
,
I.
,
Benhamou
,
B.
,
Bennouna
,
A.
, and
Limam
,
K.
,
2020
, “
Thermal Performance of Passive Techniques Integrated to a House and the Concept of Passive House in the Six Climates of Morocco
,”
Sci. Technol. Built Environ.
,
26
(
10
), pp.
1490
1508
.
38.
TRNSYS
. “
Transient System Simulation Tool (TRNSYS). Reference Manual, volume 5: Multizone Building modeling
”,
Madison, WI, USA
,
2010
.
39.
TRNFLOW Manual
. “
A Module of an Air Flow Network for Coupled Simulation With TYPE 56 (Multi-zone Building of TRNSYS)
”, Version 1.4, 2009.
40.
Soutullo
,
S.
,
Sanjuan
,
C.
,
Antonio
,
J.
, and
Tevar
,
F.
,
2010
, “
Energy Balances of Four Office Buildings in Different Locations in Spain
,”
Proceedings of the IBPSA-Canada’s Biennial Conference in Winnipeg, Manitoba
,
Canada
,
May 19–20, 2010
, pp.
149
156
.
41.
Hollmuller
,
P.
, and
Bernard
,
L.
, “
Buried Pipe Systems With Sensible and Latent Heat Exchanges: Validation of Numerical Simulation Against Analytical Solution and Long-Term Monitoring
,”
Proceedings of IPBSA’2005 Montreal
,
Canada
,
Aug. 15–18, 2005
, pp.
411
418
.
42.
Hollmuller
,
P.
,
2002
,
Utilisation des échangeurs air/sol Pour le Chauffage et le Rafraîchissement des Bâtiments Mesures in Situ, Modélisation Analytique, Simulation Numérique et Analyse Systémique
,
University of Geneva Switzerland
,
Geneva, Switzerland
.
43.
Boulard
,
T.
,
Razafinjohany
,
E.
, and
Baille
,
A.
,
March 1989
, “
Heat and Water Vapour Transfer in a Greenhouse With an Undrground Heat Storage System Part II. Model
,”
Agric. For. Meteorol.
,
45
(
3–4
), pp.
185
194
.
44.
Boulard
,
T.
,
Razafinjohany
,
E.
, and
Baille
,
A.
,
March 1989
, “
Heat and Water Vapour Transfer in a Greenhouse With an Undrground Heat Storage System Part I. Experimental Results
,”
Agric. For. Meteorol.
,
45
(
3–4
), pp.
175
184
.
45.
Khabbaz
,
M.
,
Benhamou
,
B.
,
Limam
,
K.
,
Hollmuller
,
P.
,
Hamdi
,
H.
, and
Bennouna
,
A.
,
2016
, “
Experimental and Numerical Study of an Earth-to-Air Heat Exchanger for air Cooling in a Residential Building in hot Semi-arid Climate
,”
Energy Build.
,
125
, pp.
109
121
.
46.
Meteonorm
. “
Meteonorm. V7.0.22.8
,”
2014
.
47.
ASHRAE
,
2017
,
ASHRAE Handbook—Fundamentals (SI Edition)
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
United States
, Chap. 14.
48.
Shi
,
Y.
, and
Li
,
X.
,
2018
, “
A Study on Variation Laws of Infiltration Rate With Mechanical Ventilation in a Room
,”
Build. Environ.
,
143
, pp.
269
279
.
49.
Luo
,
M.
,
Zhou
,
X.
,
Zhu
,
Y.
, and
Sundell
,
J.
,
2016
, “
Revisiting an Overlooked Parameter in Thermal Comfort Studies, the Metabolic Rate
,”
Energy Build.
,
118
, pp.
152
159
.
50.
IMANOR
,
2010
,
NM ISO 7730, Ergonomics of the Thermal-Analytical: Determination of the Ambiance and Interpretation of Thermal Comfort Using of the PMV and PPD Indices Calculation and Local Thermal Comfort Criteria (in French)
,
Institut Marocain de Normalisation
,
Rabat, Morocco
.
51.
Guo
,
R.
,
Gao
,
Y.
,
Zhuang
,
C.
,
Heiselberg
,
P.
,
Levinson
,
R.
,
Zhao
,
X.
, and
Shi
,
D.
,
2020
, “
Optimization of Cool Roof and Night Ventilation in Office Buildings : A Case Study in Xiamen, China
,”
Renew. Energy
,
147
, pp.
2279
2294
.
52.
Taleb
,
H. M.
,
2015
, “
Natural Ventilation as Energy Efficient Solution for Achieving Low-Energy Houses in Dubai
,”
Energy Build.
,
99
(
15 July 2015
), pp.
284
291
.
53.
Ji
,
W.
,
Wang
,
H.
,
Du
,
T.
, and
Zhang
,
Z.
,
2019
, “
Parametric Study on a Wall-Mounted Attached Ventilation System for Night Cooling With Different Supply air Conditions
,”
Renew. Energy
,
143
, pp.
1865
1876
.
54.
Guo
,
R.
,
Hu
,
Y.
,
Liu
,
M.
, and
Heiselberg
,
P.
,
2019
, “
Influence of Design Parameters on the Night Ventilation Performance in Office Buildings Based on Sensitivity Analysis
,”
Sustain. Cities Soc.
,
50
, p.
101661
.
55.
Xie
,
X.
,
Sahin
,
O.
,
Luo
,
Z.
, and
Yao
,
R.
,
2020
, “
Impact of Neighbourhood-Scale Climate Characteristics on Building Heating Demand and Night Ventilation Cooling Potential
,”
Renew. Energy
,
150
, pp.
943
956
.
56.
Larsen
,
T. S.
, and
Heiselberg
,
P.
,
2008
, “
Single-Sided Natural Ventilation Driven by Wind Pressure and Temperature Difference
,”
Energy Build.
,
40
(
6
), pp.
1031
1040
.
57.
Fernandes
,
L.
,
Friedrich
,
M.
,
Cóstola
,
D.
,
Matsumoto
,
E.
,
Labaki
,
L.
, and
Wellershoff
,
F.
,
2020
, “
Evaluation of Discharge Coefficients of Large Openable Windows Using Full-Scale Samples in Wind Tunnel Tests
,”
Rev. Ing. Constr.
,
35
(
2
), pp.
203
214
.
58.
Kumar
,
R.
,
Farhan
,
H. A.
,
Nayak
,
S.
,
Paswan
,
M.
, and
Achintya
,
A.
,
2021
, “
Building Design on Wind Driven Natural Ventilation With Different Simulation Air Model
,”
Mater. Today
,
46
, pp.
6670
6774
.
59.
Sobhy
,
I.
,
2017
,
Modélisaion Thermo-Aéraulique et Monitoring D’un Bâtiment Résidentiel Sous un Climat Semi-Aride et évaluation de des Performances énergétiques Avant et Après Rénovation
,
Cadi Ayyad University
,
Marakech, Morocco
.
60.
Mahach
,
H.
,
Bennouna
,
A.
, and
Benhamou
,
B.
,
2021
, “
Attempt Predicting Slab-on-Ground Temperature for Bioclimatic Buildings
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021007
.
You do not currently have access to this content.