Abstract

Irradiation time equivalence pioneers the classification of models that predict monthly average daily global solar radiation on a horizontal surface based on their double cross-validation performances. By exploiting indigenous irradiation data, novel irradiation-based models can be created and used to classify prediction models, thereby facilitating a deeper understanding of model performance beyond routine summary statistics. The concept was demonstrated by formulating novel 1-hour and 2-hour irradiation-based models to predict monthly average daily global horizontal irradiation. Double cross-validations of the two irradiation-based models and 70 existing regression models were performed using a pair of 5-year subsets. The 70 models used the measured meteorological predictors of air temperature and sunshine hours, either alone or combined. The irradiation time equivalence of a model evaluated under double cross-validation has been defined as the minimum number of hours of measured irradiation needed to predict the monthly average daily irradiation in an average year, with a root mean square error less than or equal to that of the model. Despite their intracompetitiveness, all 44 temperature-based models had an irradiation time equivalence of 1 h, while the remaining 26 models that contained the sunshine-hours predictor were classified with a higher-performance rank of 2 h. An irradiation time equivalence scale extending to 13 h was also developed to cater to the classification of higher-performance models. This fresh perspective on model performance directs future investigations toward determining whether prediction models exhibit global classification constancy.

References

1.
Angstrom
,
A.
,
1924
, “
Solar and Terrestrial Radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation
,”
Q. J. R. Metereol. Soc.
,
50
(
210
), pp.
121
126
.
2.
Besharat
,
F.
,
Dehghan
,
A. A.
, and
Faghih
,
A. R.
,
2013
, “
Empirical Models for Estimating Global Solar Radiation: A Review and Case Study
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
798
821
.
3.
Tihane
,
A.
,
Boulaid
,
M.
,
Boughamrane
,
L.
,
Nya
,
M.
,
Bouabid
,
K.
, and
Ihlal
,
A.
,
2016
, “
Modeling and Seasonal Performance Analysis of Two Monocrystalline and Polycrystalline Silicon Photovoltaic Modules
,”
Mater. Today: Proc.
,
3
(
7
), pp.
2562
2569
.
4.
Banda
,
M. H.
,
Nyeinga
,
K.
, and
Okello
,
D.
,
2019
, “
Performance Evaluation of 830 KWp Grid-Connected Photovoltaic Power Plant at Kamuzu International Airport-Malawi
,”
Energy Sustainable Dev.
,
51
, pp.
50
55
.
5.
Kasaeian
,
A.
,
Razmjoo
,
A.
,
Shirmohammadi
,
R.
,
Pourfayaz
,
F.
, and
Sumper
,
A.
,
2020
, “
Deployment of a Stand-Alone Hybrid Renewable Energy System in Coastal Areas as a Reliable Energy Source
,”
Environ. Prog. Sustainable Energy
,
39
(
3
), p.
e13354
.
6.
Lozano-Medina
,
A.
,
Manzano
,
L.
,
Marcos
,
J. D.
, and
Blanco-Marigorta
,
A. M.
,
2019
, “
Design of a Concentrating Solar Thermal Collector Installation for a Hotel Complex in Gran Canaria
,”
Energy
,
183
, pp.
803
811
.
7.
Catalina
,
T.
,
Virgone
,
J.
, and
Blanco
,
E.
,
2008
, “
Development and Validation of Regression Models to Predict Monthly Heating Demand for Residential Buildings
,”
Energy Build.
,
40
(
10
), pp.
1825
1832
.
8.
Belmahdi
,
B.
,
Louzazni
,
M.
, and
El Bouardi
,
A.
,
2020
, “
One Month-Ahead Forecasting of Mean Daily Global Solar Radiation Using Time Series Models
,”
Optik (Stuttg)
,
219
, p.
165207
.
9.
Gonçalves
,
R. S.
,
Palmero-Marrero
,
A. I.
, and
Oliveira
,
A. C.
,
2020
, “
Analysis of Swimming Pool Solar Heating Using the Utilizability Method
,”
Energy Rep.
,
6
, pp.
717
724
.
10.
Zomer
,
C.
, and
Rüther
,
R.
,
2017
, “
Simplified Method for Shading-Loss Analysis in BIPV Systems—Part 1: Theoretical Study
,”
Energy Build.
,
141
, pp.
69
82
.
11.
la Gennusa
,
M.
,
Nucara
,
A.
,
Pietrafesa
,
M.
, and
Rizzo
,
G.
,
2007
, “
A Model for Managing and Evaluating Solar Radiation for Indoor Thermal Comfort
,”
Sol. Energy
,
81
(
5
), pp.
594
606
.
12.
De Souza
,
K.
,
2019
, “
Decomposition and Transposition Model-Matching Technique in the Absence of Plane-of-Array Measurements and the Evaluation of Tilted Solar Collectors and Their Harvested Solar Resource
,”
J. Renewable Sustainable Energy
,
11
(
1
), p.
013701
.
13.
Symons
,
J. G.
,
1982
, “
The Solar Transmittance of Some Convection Suppression Devices for Solar Energy Applications: An Experimental Study
,”
ASME J. Sol. Energy Eng.
,
104
(
3
), pp.
251
256
.
14.
ur Rehman
,
N.
,
2021
, “
Optimal Layout for Facade—Mounted Solar Photovoltaic Arrays in Constrained Fields
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031004
.
15.
Aldarabseh
,
S. M.
, and
Abdallah
,
S.
,
2022
, “
Experimental and Numerical Investigation of a Semispherical Solar Still, Chamber Stepwise Basin, With and Without a Photovoltaic-Powered Electrical Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031006
.
16.
Short
,
T. D.
, and
Oldach
,
R.
,
2003
, “
Solar Powered Water Pumps: The Past, the Present—and the Future?
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
76
82
.
17.
Bany Mousa
,
O. M.
, and
Taylor
,
R. A.
,
2019
, “
A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011002
.
18.
Ihm
,
P.
, and
Krarti
,
M.
,
2013
, “
Design Optimization of Energy Efficient Office Buildings in Tunisia
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
040908
.
19.
Lave
,
M.
,
Stein
,
J.
, and
Smith
,
R.
,
2016
, “
Solar Variability Datalogger
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
054503
.
20.
Werulkar
,
A. S.
, and
Kulkarni
,
P. S.
,
2014
, “
Energy Analysis of Solar Home Lighting System With Microcontroller-Based Charge Controller
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031010
.
21.
Roca
,
L.
,
Yebra
,
L. J.
,
Berenguel
,
M.
, and
Alarcón-Padilla
,
D. C.
,
2008
, “
Modeling of a Solar Seawater Desalination Plant for Automatic Operation Purposes
,”
ASME J. Sol. Energy Eng.
,
130
(
4
),
041009
.
22.
Patel
,
B.
,
Gami
,
B.
,
Baria
,
V.
,
Patel
,
A.
, and
Patel
,
P.
,
2019
, “
Co-Generation of Solar Electricity and Agriculture Produce by Photovoltaic and Photosynthesis-Dual Model by Abellon, India
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031014
.
23.
Yang
,
D.
, and
Gueymard
,
C. A.
,
2019
, “
Producing High-Quality Solar Resource Maps by Integrating High- and Low-Accuracy Measurements Using Gaussian Processes
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109260
.
24.
Whillier
,
A.
,
1956
, “
The Determination of Hourly Values of Total Solar Radiation From Daily Summations
,”
Arch. Meteorol. Geophys. Bioklimatol. Ser. B
,
7
(
2
), pp.
197
204
.
25.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
.
26.
Collares-Pereira
,
M.
, and
Rabl
,
A.
,
1979
, “
The Average Distribution of Solar Radiation-Correlations Between Diffuse and Hemispherical and Between Daily and Hourly Insolation Values
,”
Sol. Energy
,
22
(
2
), pp.
155
164
.
27.
Gueymard
,
C.
,
1986
, “
Mean Daily Averages of Beam Radiation Received by Tilted Surfaces as Affected by the Atmosphere
,”
Sol. Energy
,
37
(
4
), pp.
261
267
.
28.
Newell
,
T. A.
,
1983
, “
Simple Models for Hourly to Daily Radiation Ratio Correlations
,”
Sol. Energy
,
31
(
3
), pp.
339
342
.
29.
Jain
,
P. C.
,
1984
, “
Comparison of Techniques for the Estimation of Daily Global Irradiation and a New Technique for the Estimation of Hourly Global Irradiation
,”
Solar Wind Technol.
,
1
(
2
), pp.
123
134
.
30.
Baig
,
A.
,
Akhter
,
P.
, and
Mufti
,
A.
,
1991
, “
A Novel Approach to Estimate the Clear Day Global Radiation
,”
Renewable Energy
,
1
(
1
), pp.
119
123
.
31.
Olomiyesan
,
B. M.
, and
Oyedum
,
O. D.
,
2016
, “
Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria
,”
J. Solar Energy
,
2016
, pp.
1
7
.
32.
Karaveli
,
A. B.
, and
Akinoglu
,
B. G.
,
2018
, “
Development of New Monthly Global and Diffuse Solar Irradiation Estimation Methodologies and Comparisons
,”
Int. J. Green Energy
,
15
(
5
), pp.
1
14
.
33.
Mosier
,
C. I.
,
1951
, “
The Need and Means of Cross Validation. I. Problems and Designs of Cross-Validation
,”
Educ. Psychol. Meas.
,
11
(
1
), pp.
5
11
.
34.
Hargreaves
,
G. H.
, and
Samani
,
Z. A.
,
1982
, “
Estimating Potential Evapotranspiration
,”
J. Irrig. Drain. Div.
,
108
(
3
), pp.
225
230
.
35.
Chen
,
R.
,
Ersi
,
K.
,
Yang
,
J.
,
Lu
,
S.
, and
Zhao
,
W.
,
2004
, “
Validation of Five Global Radiation Models With Measured Daily Data in China
,”
Energy Convers. Manage.
,
45
(
11–12
), pp.
1759
1769
.
36.
Richardson
,
C. W.
,
1985
, “
Weather Simulation for Crop Management Models
,”
Trans. Am. Soc. Agric. Eng.
,
28
(
5
), pp.
1602
1606
.
37.
Chen
,
J. L.
, and
Li
,
G. S.
,
2013
, “
Estimation of Monthly Average Daily Solar Radiation From Measured Meteorological Data in Yangtze River Basin in China
,”
Int. J. Climatol.
,
33
(
2
), pp.
487
498
.
38.
Ohunakin
,
O. S.
,
Adaramola
,
M. S.
,
Oyewola
,
O. M.
, and
Fagbenle
,
R. O.
,
2013
, “
Correlations for Estimating Solar Radiation Using Sunshine Hours and Temperature Measurement in Osogbo, Osun State, Nigeria
,”
Front. Energy
,
7
(
2
), pp.
214
222
.
39.
Jahani
,
B.
,
Dinpashoh
,
Y.
, and
Raisi Nafchi
,
A.
,
2017
, “
Evaluation and Development of Empirical Models for Estimating Daily Solar Radiation
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
878
891
.
40.
Fan
,
J.
,
Chen
,
B.
,
Wu
,
L.
,
Zhang
,
F.
,
Lu
,
X.
, and
Xiang
,
Y.
,
2018
, “
Evaluation and Development of Temperature-Based Empirical Models for Estimating Daily Global Solar Radiation in Humid Regions
,”
Energy
,
144
, pp.
903
914
.
41.
Samani
,
Z.
,
2000
, “
Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data
,”
J. Irrig. Drain. Eng.
,
126
(
4
), pp.
265
267
.
42.
Hassan
,
G. E.
,
Youssef
,
M. E.
,
Mohamed
,
Z. E.
,
Ali
,
M. A.
, and
Hanafy
,
A. A.
,
2016
, “
New Temperature-Based Models for Predicting Global Solar Radiation
,”
Appl. Energy
,
179
, pp.
437
450
.
43.
Thornton
,
P. E.
, and
Running
,
S. W.
,
1999
, “
An Improved Algorithm for Estimating Incident Daily Solar Radiation From Measurements of Temperature, Humidity, and Precipitation
,”
Agric. For. Meteorol.
,
93
(
4
), pp.
211
228
.
44.
Bristow
,
K. L.
, and
Campbell
,
G. S.
,
1984
, “
On the Relationship Between Incoming Solar Radiation and Daily Maximum and Minimum Temperature
,”
Agric. For. Meteorol.
,
31
(
2
), pp.
159
166
.
45.
Goodin
,
D. G.
,
Hutchinson
,
J. M. S.
,
Vanderlip
,
R. L.
, and
Knapp
,
M. C.
,
1999
, “
Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data
,”
Agron. J.
,
91
(
5
), pp.
845
851
.
46.
Hunt
,
L. A.
,
Kuchar
,
L.
, and
Swanton
,
C. J.
,
1998
, “
Estimation of Solar Radiation for Use in Crop Modelling
,”
Agric. For. Meteorol.
,
91
(
3–4
), pp.
293
300
.
47.
Benghanem
,
M.
, and
Mellit
,
A.
,
2014
, “
A Simplified Calibrated Model for Estimating Daily Global Solar Radiation in Madinah, Saudi Arabia
,”
Theor. Appl. Climatol.
,
115
(
1–2
), pp.
197
205
.
48.
Clemence
,
B. S. E.
,
1992
, “
An Attempt at Estimating Solar Radiation at South African Sites Which Measure Air Temperature Only
,”
S. Afr. J. Plant Soil
,
9
(
1
), pp.
40
42
.
49.
Almorox
,
J.
,
Hontoria
,
C.
, and
Benito
,
M.
,
2011
, “
Models for Obtaining Daily Global Solar Radiation With Measured Air Temperature Data in Madrid (Spain)
,”
Appl. Energy
,
88
(
5
), pp.
1703
1709
.
50.
Ozoegwu
,
C. G.
,
2018
, “
New Temperature-Based Models for Reliable Prediction of Monthly Mean Daily Global Solar Radiation
,”
J. Renewable Sustainable Energy
,
10
(
2
), p.
023706
.
51.
Alsamamra
,
H.
,
2019
, “
Estimation of Global Solar Radiation From Temperature Extremes: A Case Study of Hebron City, Palestine
,”
J. Energy Nat. Resour.
,
8
(
1
), pp.
1
5
.
52.
De Souza
,
K.
,
2018
, “
Improved Accuracy Over Established Temperature-Based Models of Estimating Monthly Average Daily Global Solar Irradiation by Using Ambient Hourly Temperature Only
,”
J. Renewable Sustainable Energy
,
10
(
4
), p.
043703
.
53.
Li
,
H.
,
Cao
,
F.
,
Wang
,
X.
, and
Ma
,
W.
,
2014
, “
A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China
,”
Sci. World J.
,
2014
(
9
), p.
128754
.
54.
Donatelli
,
M.
, and
Campbell
,
G. S.
,
1998
, “
A Simple Model to Estimate Global Solar Radiation
,”
Proceedings of the Fifth European Society of Agronomy Congress
,
Nitra, Slovak Republic
,
June–July
.
55.
Weiss
,
A.
,
Hays
,
C. J.
,
Hu
,
Q.
, and
Easterling
,
W. E.
,
2001
, “
Incorporating Bias Error in Calculating Solar Irradiance: Implications for Crop Yield Simulations
,”
Agron. J.
,
93
(
6
), pp.
1321
1326
.
56.
Okonkwo
,
G. N.
, and
Nwokoye
,
A. O. C.
,
2014
, “
Estimating Global Solar Radiation From Temperature Data in Minna Location
,”
Eur. Sci. J.
,
10
(
15
), pp.
254
264
. https://eujournal.org/index.php/esj/article/view/3454
57.
Awachie
,
I. R. N.
, and
Okeke
,
C. E.
,
1990
, “
New Empirical Solar Model and Its Use in Predicting Global Solar Irradiation
,”
Niger. J. Solar Energy
,
9
, pp.
143
156
.
58.
Li
,
M. F.
,
Liu
,
H. B.
,
Guo
,
P. T.
, and
Wu
,
W.
,
2010
, “
Estimation of Daily Solar Radiation From Routinely Observed Meteorological Data in Chongqing, China
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2575
2579
.
59.
Li
,
M. F.
,
Fan
,
L.
,
Liu
,
H. B.
,
Guo
,
P. T.
, and
Wu
,
W.
,
2013
, “
A General Model for Estimation of Daily Global Solar Radiation Using Air Temperatures and Site Geographic Parameters in Southwest China
,”
J. Atmos. Sol. Terr. Phys.
,
92
, pp.
145
150
.
60.
Almorox
,
J.
,
Bocco
,
M.
, and
Willington
,
E.
,
2013
, “
Estimation of Daily Global Solar Radiation From Measured Temperatures at Cañada de Luque, Córdoba, Argentina
,”
Renewable Energy
,
60
, pp.
382
387
.
61.
Falayi
,
E. O.
,
Adepitan
,
J. O.
, and
Rabiu
,
A. B.
,
2008
, “
Empirical Models for the Correlation of Global Solar Radiation With Meteorological Data for Iseyin, Nigeria
,”
Int. J. Phys. Sci.
,
3
(
9
), pp.
210
216
. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.584.1208
62.
Okundamiya
,
M. S.
, and
Nzeako
,
A. N.
,
2011
, “
Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria
,”
J. Control Sci. Eng.
,
2011
(
7
), p.
356406
.
63.
Panday
,
C.
, and
Katiyar
,
A.
,
2010
, “
Temperature Base Correlation for the Estimation of Global Solar Radiation on Horizontal Surface
,”
Indian J. Sci. Technol.
,
1
(
4
), pp.
737
744
.
64.
Akpabio
,
L. E.
,
Udo
,
S. O.
, and
Etuk
,
S. E.
,
2004
, “
Empirical Correlations of Global Solar Radiation With Meteorological Data for Onne, Nigeria
,”
Turk. J. Phys.
,
28
(
3
), pp.
205
212
. https://journals.tubitak.gov.tr/physics/vol28/iss3/8/
65.
Ertekin
,
C.
, and
Yaldiz
,
O.
,
1999
, “
Estimation of Monthly Average Daily Global Radiation on Horizontal Surface for Antalya (Turkey)
,”
Renewable Energy
,
17
(
1
), pp.
95
102
.
66.
Prescott
,
J. A.
,
1940
, “
Evaporation From Water Surface in Relation to Solar Radiation
,”
Trans. R. Soc. S. Aust.
,
64
, pp.
114
118
.
67.
Ögelman
,
H.
,
Ecevit
,
A.
, and
Tasdemiroǧlu
,
E.
,
1984
, “
A New Method for Estimating Solar Radiation From Bright Sunshine Data
,”
Sol. Energy
,
33
(
6
), pp.
619
625
.
68.
Alvi
,
S. H.
, and
Elagib
,
N. A.
,
1995
, “
Estimation of Solar Radiation for the Republic of Sudan
,”
Int. J. Ambient Energy
,
16
(
2
), pp.
67
95
.
69.
Ampratwum
,
D. B.
, and
Dorvlo
,
A. S. S.
,
1999
, “
Estimation of Solar Radiation From the Number of Sunshine Hours
,”
Appl. Energy
,
63
(
3
), pp.
161
167
.
70.
Newland
,
F. J.
,
1989
, “
A Study of Solar Radiation Models for the Coastal Region of South China
,”
Sol. Energy
,
43
(
4
), pp.
227
235
.
71.
Yıldırım
,
H. B.
,
Çelik
,
Ö
,
Teke
,
A.
, and
Barutçu
,
B.
,
2018
, “
Estimating Daily Global Solar Radiation With Graphical User Interface in Eastern Mediterranean Region of Turkey
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1528
1537
.
72.
Almorox
,
J.
, and
Hontoria
,
C.
,
2004
, “
Global Solar Radiation Estimation Using Sunshine Duration in Spain
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1529
1535
.
73.
Bakirci
,
K.
,
2009
, “
Correlations for Estimation of Daily Global Solar Radiation With Hours of Bright Sunshine in Turkey
,”
Energy
,
34
(
4
), pp.
485
501
.
74.
Togrul
,
I. T.
, and
Onat
,
E.
,
1999
, “
Study for Estimating Solar Radiation in Elazig Using Geographical and Meteorological Data
,”
Energy Convers. Manage.
,
40
(
14
), pp.
1577
1584
.
75.
El-Metwally
,
M.
,
2005
, “
Sunshine and Global Solar Radiation Estimation at Different Sites in Egypt
,”
J. Atmos. Sol. Terr. Phys.
,
67
(
14
), pp.
1331
1342
.
76.
Louche
,
A.
,
Notton
,
G.
,
Poggi
,
P.
, and
Simonnot
,
G.
,
1991
, “
Correlations for Direct Normal and Global Horizontal Irradiation on a French Mediterranean Site
,”
Sol. Energy
,
46
(
4
), pp.
261
266
.
77.
Lewis
,
G.
,
1983
, “
Estimates of Irradiance Over Zimbabwe
,”
Sol. Energy
,
31
(
6
), pp.
609
612
.
78.
Li
,
M. F.
,
Tang
,
X. P.
,
Wu
,
W.
, and
Liu
,
H. B.
,
2013
, “
General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China
,”
Energy Convers. Manage.
,
70
, pp.
139
148
.
79.
Lee
,
K. H.
,
2015
, “
Improving the Correlation Between Incoming Solar Radiation and Sunshine Hour Using DTR
,”
Int. J. Climatol.
,
35
(
3
), pp.
361
374
.
80.
Olayinka
,
S.
,
2011
, “
Estimation of Global and Diffuse Solar Radiations for Selected Cities in Nigeria
,”
Int. J. Energy Environ. Eng.
,
2
(
3
), pp.
13
33
. http://ijeee.azad.ac.ir/article_510893.html
81.
Saffaripour
,
M. H.
,
Mehrabian
,
M. A.
, and
Bazargan
,
H.
,
2013
, “
Predicting Solar Radiation Fluxes for Solar Energy System Applications
,”
Int. J. Energy Environ. Eng.
,
10
(
4
), pp.
761
768
.
82.
Sambo
,
A. S.
, and
Doyle
,
M. D. C.
,
1988
, “
The Correlation of Global and Diffuse Solar Radiation Components With Meteorological Data for Zaria
,”
Niger. J. Solar Energy
,
7
, pp.
16
27
.
83.
De Souza
,
K.
,
2018
, “
Temperature-Based Model for Monthly Average Hourly Global Solar Radiation for the Caribbean Island of Trinidad
,”
J. Renewable Sustainable Energy
,
10
(
3
), p.
033701
.
84.
De Souza
,
K.
, and
Andrews
,
R.
,
2015
, “
Models for Daily Global Solar Radiation for the Caribbean Island of Trinidad
,”
J. Renewable Sustainable Energy
,
7
(
1
), p.
013132
.
85.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley & Sons
,
New York
.
86.
Cooper
,
P. I.
,
1969
, “
The Absorption of Radiation in Solar Stills
,”
Sol. Energy
,
12
(
3
), pp.
333
346
.
87.
Şen
,
Z.
,
1998
, “
Fuzzy Algorithm for Estimation of Solar Irradiation From Sunshine Duration
,”
Sol. Energy
,
63
(
1
), pp.
39
49
.
88.
Lyra
,
G. B.
,
Zanetti
,
S. S.
,
Santos
,
A. A. R.
,
de Souza
,
J. L.
,
Lyra
,
G. B.
,
Oliveira-Júnior
,
J. F.
, and
Lemes
,
M. A. M.
,
2016
, “
Estimation of Monthly Global Solar Irradiation Using the Hargreaves–Samani Model and an Artificial Neural Network for the State of Alagoas in Northeastern Brazil
,”
Theor. Appl. Climatol.
,
125
(
3–4
), pp.
743
756
.
89.
Meenal
,
R.
, and
Selvakumar
,
A. I.
,
2018
, “
Assessment of SVM, Empirical and ANN Based Solar Radiation Prediction Models With Most Influencing Input Parameters
,”
Renewable Energy
,
121
, pp.
324
343
.
90.
Doorga
,
J. R. S.
,
Rughooputh
,
S. D. D. V.
, and
Boojhawon
,
R.
,
2019
, “
Modelling the Global Solar Radiation Climate of Mauritius Using Regression Techniques
,”
Renewable Energy
,
131
, pp.
861
878
.
91.
Gouda
,
S. G.
,
Hussein
,
Z.
,
Luo
,
S.
,
Wang
,
P.
,
Cao
,
H.
, and
Yuan
,
Q.
,
2018
, “
Empirical Models for Estimating Global Solar Radiation in Wuhan City, China
,”
Eur. Phys. J. Plus
,
133
(
12
), p.
517
.
92.
Okundamiya
,
M. S.
,
Emagbetere
,
J. O.
, and
Ogujor
,
E. A.
,
2016
, “
Evaluation of Various Global Solar Radiation Models for Nigeria
,”
Int. J. Green Energy
,
13
(
5
), pp.
505
512
.
93.
Makade
,
R. G.
,
Chakrabarti
,
S.
, and
Jamil
,
B.
,
2019
, “
Prediction of Global Solar Radiation Using a Single Empirical Model for Diversified Locations Across India
,”
Urban Clim.
,
29
, p.
100492
.
94.
Yadav
,
A. K.
, and
Chandel
,
S. S.
,
2014
, “
Solar Radiation Prediction Using Artificial Neural Network Techniques: A Review
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
772
781
.
95.
Glover
,
J.
, and
McCulloch
,
J. S. G.
,
1958
, “
The Empirical Relation Between Solar Radiation and Hours of Sunshine
,”
Q. J. R. Metereol. Soc.
,
84
(
360
), pp.
172
175
.
96.
Elagib
,
N. A.
, and
Mansell
,
M. G.
,
2000
, “
New Approaches for Estimating Global Solar Radiation Across Sudan
,”
Energy Convers. Manage.
,
41
(
5
), pp.
419
434
.
97.
Dogniaux
,
R.
, and
Lemoine
,
M.
,
1983
, “
Classification of Radiation Sites in Terms of Different Indices of Atmospheric Transparency
,”
Solar Radiat. Data
,
2
, pp.
94
107
.
98.
Reddy
,
K. S.
, and
Ranjan
,
M.
,
2003
, “
Solar Resource Estimation Using Artificial Neural Networks and Comparison With Other Correlation Models
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2519
2530
.
99.
Abdalla
,
Y. A. G.
,
1994
, “
New Correlations of Global Solar Radiation With Meteorological Parameters for Bahrain
,”
Int. J. Solar Energy
,
16
(
2
), pp.
111
120
.
100.
Barbaro
,
S.
,
Coppolino
,
S.
,
Leone
,
C.
, and
Sinagra
,
E.
,
1978
, “
Global Solar Radiation in Italy
,”
Sol. Energy
,
20
(
5
), pp.
431
435
.
101.
Sabbagh
,
J. A.
,
Sayigh
,
A. A. M.
, and
El-Salam
,
E. M. A.
,
1977
, “
Estimation of the Total Solar Radiation From Meteorological Data
,”
Sol. Energy
,
19
(
3
), pp.
307
311
.
102.
Li
,
H.
,
Cao
,
F.
,
Bu
,
X.
, and
Zhao
,
L.
,
2015
, “
Models for Calculating Daily Global Solar Radiation From Air Temperature in Humid Regions—A Case Study
,”
Environ. Prog. Sustainable Energy
,
34
(
2
), pp.
595
599
.
103.
Mubiru
,
J.
,
Banda
,
E. J. K. B.
,
D’Ujanga
,
F.
, and
Senyonga
,
T.
,
2007
, “
Assessing the Performance of Global Solar Radiation Empirical Formulations in Kampala, Uganda
,”
Theor. Appl. Climatol.
,
87
(
1–4
), pp.
179
184
.
104.
El-Sebaii
,
A. A.
,
Al-Ghamdi
,
A. A.
,
Al-Hazmi
,
F. S.
, and
Faidah
,
A. S.
,
2009
, “
Estimation of Global Solar Radiation on Horizontal Surfaces in Jeddah, Saudi Arabia
,”
Energy Policy
,
37
(
9
), pp.
3645
3649
.
105.
Chandel
,
S. S.
,
Aggarwal
,
R. K.
, and
Pandey
,
A. N.
,
2005
, “
New Correlation to Estimate Global Solar Radiation on Horizontal Surfaces Using Sunshine Hour and Temperature Data for Indian Sites
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
417
420
.
106.
Yıldırım
,
H. B.
,
Teke
,
A.
, and
Antonanzas-Torres
,
F.
,
2018
, “
Evaluation of Classical Parametric Models for Estimating Solar Radiation in the Eastern Mediterranean Region of Turkey
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2053
2065
.
107.
Swartman
,
R. K.
, and
Ogunlade
,
O.
,
1967
, “
Solar Radiation Estimates From Common Parameters
,”
Sol. Energy
,
11
(
3–4
), pp.
170
172
.
108.
Onyango
,
F. N.
,
1983
, “
On the Estimation of Global Solar Insolation
,”
Sol. Energy
,
31
(
1
), pp.
69
71
.
109.
Allen
,
R. G.
,
1997
, “
Self-Calibrating Method for Estimating Solar Radiation From Air Temperature
,”
J. Hydrol. Eng.
,
2
(
2
), pp.
56
67
.
110.
Chen
,
R.
,
Kang
,
E.
,
Ji
,
X.
,
Yang
,
J.
, and
Zhang
,
Z.
,
2006
, “
Trends of the Global Radiation and Sunshine Hours in 1961–1998 and Their Relationships in China
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
2859
2856
.
111.
Badescu
,
V.
,
1999
, “
Correlations to Estimate Monthly Mean Daily Solar Global Irradiation: Application to Romania
,”
Energy
,
24
(
10
), pp.
883
893
.
112.
Luo
,
L.
,
Hamilton
,
D.
, and
Han
,
B.
,
2010
, “
Estimation of Total Cloud Cover From Solar Radiation Observations at Lake Rotorua, New Zealand
,”
Sol. Energy
,
84
(
3
), pp.
501
506
.
113.
Black
,
J. N.
,
1956
, “
The Distribution of Solar Radiation Over the Earth’s Surface
,”
Arch. Meteorol. Geophys. Bioklimatol. Ser. B
,
7
(
2
), pp.
165
189
.
114.
Lin
,
W.
, and
Gao
,
W.
,
1999
, “
Correlations for Estimating Monthly Average Global and Diffuse Solar Radiation on Horizontal Surfaces at Tengchong, China
,”
Energy Convers. Manage.
,
40
(
5
), pp.
505
508
.
115.
Antonopoulos
,
V. Z.
,
Papamichail
,
D. M.
,
Aschonitis
,
V. G.
, and
Antonopoulos
,
A. V.
,
2019
, “
Solar Radiation Estimation Methods Using ANN and Empirical Models
,”
Comput. Electron. Agric.
,
160
, pp.
160
167
.
116.
Jahani
,
B.
, and
Mohammadi
,
B.
,
2019
, “
A Comparison Between the Application of Empirical and ANN Methods for Estimation of Daily Global Solar Radiation in Iran
,”
Theor. Appl. Climatol.
,
137
(
1–2
), pp.
1257
1269
.
117.
Gürel
,
A. E.
,
Ağbulut
,
Ü
, and
Biçen
,
Y.
,
2020
, “
Assessment of Machine Learning, Time Series, Response Surface Methodology and Empirical Models in Prediction of Global Solar Radiation
,”
J. Cleaner Prod.
,
277
, p.
122353
.
118.
Tymvios
,
F. S.
,
Jacovides
,
C. P.
,
Michaelides
,
S. C.
, and
Scouteli
,
C.
,
2005
, “
Comparative Study of Ångström’s and Artificial Neural Networks’ Methodologies in Estimating Global Solar Radiation
,”
Sol. Energy
,
78
(
6
), pp.
752
762
.
119.
Al-Shamisi
,
M.
,
Assi
,
A.
, and
Hejase
,
H.
,
2014
, “
Estimation of Global Solar Radiation Using Artificial Neural Networks in Abu Dhabi City, United Arab Emirates
,” ASME J. Sol. Energy Eng.,
136
(
2
), p.
024502
.
120.
Ghasemi Mobtaker
,
H.
,
Ajabshirchi
,
Y.
,
Ranjbar
,
S. F.
,
Matloobi
,
M.
, and
Taki
,
M.
,
2016
, “
Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
,”
J. Renewable Energy Environ.
,
3
(
3
), pp.
21
30
.
121.
Azadeh
,
A.
,
Maghsoudi
,
A.
, and
Sohrabkhani
,
S.
,
2009
, “
An Integrated Artificial Neural Networks Approach for Predicting Global Radiation
,”
Energy Convers. Manage.
,
50
(
6
), pp.
1497
1505
.
122.
Citakoglu
,
H.
,
2015
, “
Comparison of Artificial Intelligence Techniques via Empirical Equations for Prediction of Solar Radiation
,”
Comput. Electron. Agric.
,
118
, pp.
28
37
.
123.
Al-Shamisi
,
M. H.
,
Assi
,
A. H.
, and
Hejase
,
H. A. N.
,
2013
, “
Artificial Neural Networks for Predicting Global Solar Radiation in Al Ain City—UAE
,”
Int. J. Green Energy
,
10
(
5
), pp.
443
456
.
124.
Chukwu
,
C.
,
2012
, “
Analysis of Some Meteorological Parameters Using Artificial Neural Network Method for Makurdi, Nigeria
,”
Afr. J. Environ. Sci. Technol.
,
6
(
3
), pp.
182
188
.
125.
Piri
,
J.
, and
Kisi
,
O.
,
2015
, “
Modelling Solar Radiation Reached to the Earth Using ANFIS, NN-ARX, and Empirical Models (Case Studies: Zahedan and Bojnurd Stations)
,”
J. Atmos. Sol. Terr. Phys.
,
123
, pp.
39
47
.
126.
Yadav
,
A. K.
,
Malik
,
H.
, and
Chandel
,
S. S.
,
2014
, “
Selection of Most Relevant Input Parameters Using WEKA for Artificial Neural Network Based Solar Radiation Prediction Models
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
509
519
.
127.
Yadav
,
A. K.
,
Malik
,
H.
, and
Chandel
,
S. S.
,
2015
, “
Application of Rapid Miner in ANN Based Prediction of Solar Radiation for Assessment of Solar Energy Resource Potential of 76 Sites in Northwestern India
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1093
1106
.
128.
Robnik-Šikonja
,
M.
, and
Kononenko
,
I.
,
2003
, “
Theoretical and Empirical Analysis of ReliefF and RReliefF
,”
Mach. Learn.
,
53
(
1/2
), pp.
23
69
.
129.
Centner
,
V.
,
Massart
,
D. L.
,
de Noord
,
O. E.
,
de Jong
,
S.
,
Vandeginste
,
B. M.
, and
Sterna
,
C.
,
1996
, “
Elimination of Uninformative Variables for Multivariate Calibration
,”
Anal. Chem.
,
68
(
21
), pp.
3851
3858
.
130.
Li
,
H. D.
,
Xu
,
Q. S.
, and
Liang
,
Y. Z.
,
2012
, “
Random Frog: An Efficient Reversible Jump Markov Chain Monte Carlo-Like Approach for Variable Selection With Applications to Gene Selection and Disease Classification
,”
Anal. Chim. Acta
,
740
, pp.
20
26
.
131.
He
,
X.
,
Cai
,
D.
, and
Niyogi
,
P.
,
2005
, “
Laplacian Score for Feature Selection
,”
Advances in Neural Information Processing Systems-Proceedings of the NIPS
,
Vancouver, Canada
,
Dec. 5–8
, pp.
507
514
. https://dl.acm.org/doi/10.5555/2976248.2976312
132.
Almaraashi
,
M.
,
2018
, “
Investigating the Impact of Feature Selection on the Prediction of Solar Radiation in Different Locations in Saudi Arabia
,”
Appl. Soft Comput. J.
,
66
, pp.
250
263
.
133.
Alsina
,
E. F.
,
Bortolini
,
M.
,
Gamberi
,
M.
, and
Regattieri
,
A.
,
2016
, “
Artificial Neural Network Optimisation for Monthly Average Daily Global Solar Radiation Prediction
,”
Energy Convers. Manage.
,
120
, pp.
320
329
.
134.
Lampinen
,
J.
, and
Vehtari
,
A.
,
2001
, “
Bayesian Approach for Neural Networks—Review and Case Studies
,”
Neural Netw.
,
14
(
3
), pp.
257
274
.
135.
Ozgoren
,
M.
,
Bilgili
,
M.
, and
Sahin
,
B.
,
2012
, “
Estimation of Global Solar Radiation Using ANN Over Turkey
,”
Expert Syst. Appl.
,
39
(
5
), pp.
5043
5051
.
You do not currently have access to this content.