Abstract

Electricity and gas-based heat treatment of metal is an energy-intensive process. To mitigate the use of such high-grade energy, the concept of an open volumetric air receiver-based solar convective furnace (SCF) system is developed for the heat treatment of metal. This system includes an in situ waste heat recovery mechanism. This paper presents a Joule heating-based, controlled, experimental assessment of a laboratory-scale, retrofitted, SCF system for generating benchmark data. The reported measurements illustrate the heat transfer for (a) the charging and discharging process of thermal energy storage and (b) the two-stage heat treatment of metal with an in situ heat recovery process. The overall system efficiency, including heat recovery, heat storage, and heat transfer, is found to be 24%. Thus, the SCF system can serve as a viable alternative to an electrical energy-based heat treatment furnace.

References

1.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2019
, “
Global Advancement of Solar Thermal Energy Technologies for Industrial Process Heat and Its Future Prospects: A Review
,”
Energy Convers. Manage.
,
195
, pp.
885
908
.
2.
Bader
,
R.
, and
Lipiński
,
W.
,
2017
,
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Australia
, pp.
403
459
. doi.org/10.1016/B978-0-08-100516-3.00018-6.
3.
Afrin
,
S.
,
Hossain
,
N.
,
Ma
,
Z.
,
Krushnarao Kotteda
,
V. M.
,
Badhan
,
A.
, and
Kumar
,
V.
,
2022
, “
On-Sun Testing of a High-Temperature Solar Receiver’s Flux Distribution
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021001
.
4.
Eglinton
,
T.
,
Hinkley
,
J.
,
Beath
,
A.
, and
Dell’Amico
,
M.
,
2013
, “
Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry
,”
JOM
,
65
(
12
), pp.
1710
1720
.
5.
Fernández-González
,
D.
,
Ruiz-Bustinza
,
I.
,
González-Gasca
,
C.
,
Noval
,
J. P.
,
Mochón-Castaños
,
J.
,
Sancho-Gorostiaga
,
J.
, and
Verdeja
,
L. F.
,
2018
, “
Concentrated Solar Energy Applications in Materials Science and Metallurgy
,”
Sol. Energy
,
170
, pp.
520
540
.
6.
Herranz
,
G.
, and
Rodríguez
,
G. P.
,
2010
, “Uses of Concentrated Solar Energy in Materials Science,”
Solar Energy
,
R. D.
Rugescu
, ed.,
Dover
,
New York
, pp.
145
170
. 10.5772/8067
7.
Jabari
,
F.
,
Nojavan
,
S.
,
Mohammadi-Ivatloo
,
B.
,
Ghaebi
,
H.
, and
Mehrjerdi
,
H.
,
2018
, “
Risk-Constrained Scheduling of Solar Stirling Engine Based Industrial Continuous Heat Treatment Furnace
,”
Appl. Therm. Eng.
,
128
, pp.
940
955
.
8.
Ferriere
,
A.
,
Faillat
,
C.
,
Galasso
,
S.
,
Barrallier
,
L.
, and
Masse
,
J. E.
,
1999
, “
Surface Hardening of Steel Using Highly Concentrated Solar Energy Process
,”
ASME J. Sol. Energy Eng.
,
121
(
1
), pp.
36
39
.
9.
Purohit
,
S.
,
Brooks
,
G.
,
Rhamdhani
,
M. A.
, and
Pownceby
,
M. I.
,
2021
, “
Evaluation of Concentrated Solar Thermal Energy for Iron Ore Agglomeration
,”
J. Cleaner Prod.
,
317
, p.
128313
.
10.
Suresh
,
D.
, and
Rohatgi
,
P. K.
,
1979
, “
Melting and Casting of Alloys in a Solar Furnace
,”
Sol. Energy
,
23
(
6
), pp.
553
555
.
11.
Oliveira
,
F. A. C.
,
Fernandes
,
J. C.
,
Rodríguez
,
J.
,
Cañadas
,
I.
,
Galindo
,
J.
, and
Rosa
,
L. G.
,
2016
, “
Temperature Uniformity Improvement in a Solar Furnace by Indirect Heating
,”
Sol. Energy
,
140
, pp.
141
150
.
12.
Pereira
,
J. C. G.
,
Rodríguez
,
J.
,
Fernandes
,
J. C.
, and
Rosa
,
L. G.
,
2020
, “
Homogeneous Flux Distribution in High-Flux Solar Furnaces
,”
Energies
,
13
(
2
), pp.
433
451
.
13.
Ferriere and
,
A.
, and
Lestrade
,
L.
,
2002
, “
Solar Processing for the Glazing of ZrO2-Y2O3 Thermal Barrier Coatings: Reduction of Crack Initiation
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
315
317
.
14.
Alonso
,
E.
, and
Romero
,
M.
,
2015
, “
Review of Experimental Investigation on Directly Irradiated Particles Solar Reactors
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
53
67
.
15.
Villafán-Vidales
,
H. I.
,
Arancibia-Bulnes
,
C. A.
,
Riveros-Rosas
,
D.
,
Romero-Paredes
,
H.
, and
Estrada
,
C. A.
,
2017
, “
An Overview of the Solar Thermochemical Processes for Hydrogen and Syngas Production: Reactors, and Facilities
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
894
908
.
16.
Catana
,
D.
,
Rodriguez
,
J.
,
Cañadas
,
I.
, and
Milosan
,
I.
,
2019
, “
Aspects of Thermal Transfer in Heat Treatment of Alloy Steels Using Concentrated Solar Energy
,”
J. Therm. Anal. Calorim.
,
138
(
4
), pp.
2541
2553
.
17.
Jabari
,
F.
,
Mohammadi-Ivatloo
,
B.
,
Sharifian
,
M. B. B.
, and
Nojavan
,
S.
,
2018
, “
Design and Robust Optimization of a Novel Industrial Continuous Heat Treatment Furnace
,”
Energy
,
142
, pp.
896
910
.
18.
Patidar
,
D.
,
Tiwari
,
S.
,
Sharma
,
P. K.
,
Chandra
,
L.
, and
Shekhar
,
R.
,
2015
, “
Open Volumetric Air Receiver Based Solar Convective Aluminum Heat Treatment Furnace System
,”
Energy Procedia
,
69
, pp.
506
517
.
19.
Patidar
,
D.
,
Tiwari
,
S.
,
Sharma
,
P.
,
Pardeshi
,
R.
,
Chandra
,
L.
, and
Shekhar
,
R.
,
2015
, “
Solar Convective Furnace for Metals Processing
,”
JOM
,
67
(
11
), pp.
2696
2704
.
20.
Kumar
,
V. D.
,
Chandra
,
L.
,
Sharma
,
P.
, and
Shekhar
,
R.
,
2022
, “Modes of Operation, Design, and Experiments in a Laboratory Solar Convective Furnace System,”
REWAS 2022: Energy Technologies and CO2 Management (Volume II)
,
Springer
,
Cham
, p.
105
.
21.
Zunft
,
S.
,
Hänel
,
M.
,
Krüger
,
M.
,
Dreißigacker
,
V.
,
Göhring
,
F.
, and
Wahl
,
E.
,
2011
, “
Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031019
.
22.
Hamanah
,
W. M.
,
Salem
,
A. S.
,
Abido
,
M. A.
,
Al-Sulaiman
,
F. A.
,
Qwbaiban
,
A. M.
, and
Habetler
,
T. G.
,
2022
, “
Modeling, Implementing, and Evaluating of an Advanced Dual Axis Heliostat Drive System
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041001
.
23.
Vigneshwaran
,
K.
,
Sodhi
,
G. S.
,
Muthukumar
,
P.
, and
Subbiah
,
S.
,
2019
, “
Concrete Based High Temperature Thermal Energy Storage System: Experimental and Numerical Studies
,”
Energy Convers. Manage.
,
198
, p.
111905
.
24.
Ahmed
,
N.
,
Elfeky
,
K. E.
,
Lu
,
L.
, and
Wang
,
Q. W.
,
2019
, “
Thermal and Economic Evaluation of Thermocline Combined Sensible-Latent Heat Thermal Energy Storage System for Medium Temperature Applications
,”
Energy Convers. Manage.
,
189
, pp.
14
23
.
25.
Mendecka
,
B.
,
Cozzolino
,
R.
,
Leveni
,
M.
, and
Bella
,
G.
,
2019
, “
Energetic and Exergetic Performance Evaluation of a Solar Cooling and Heating System Assisted With Thermal Storage
,”
Energy
,
176
, pp.
816
829
.
26.
Royo
,
P.
,
Acevedo
,
L.
,
Ferreira
,
V. J.
,
García-Armingol
,
T.
,
López-Sabirón
,
A. M.
, and
Ferreira
,
G.
,
2019
, “
High-Temperature PCM-Based Thermal Energy Storage for Industrial Furnaces Installed in Energy-Intensive Industries
,”
Energy
,
173
, pp.
1030
1040
.
27.
Kuravi
,
S.
,
Trahan
,
J.
,
Goswami
,
Y.
,
Jotshi
,
C.
,
Stefanakos
,
E.
, and
Goel
,
N.
,
2013
, “
Investigation of a High-Temperature Packed-Bed Sensible Heat Thermal Energy Storage System With Large-Sized Elements
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041008
.
28.
Mongibello
,
L.
,
Atrigna
,
M.
, and
Graditi
,
G.
,
2013
, “
Parametric Analysis of a High Temperature Sensible Heat Storage System by Numerical Simulations
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041010
.
29.
Sharma
,
P.
,
Sarma
,
R.
,
Chandra
,
L.
,
Shekhar
,
R.
, and
Ghoshdastidar
,
P. S.
,
2015
, “
Solar Tower Based Aluminum Heat Treatment System: Part I. Design and Evaluation of an Open Volumetric Air Receiver
,”
Sol. Energy
,
111
, pp.
135
150
.
30.
Sharma
,
P.
,
Sarma
,
R.
,
Chandra
,
L.
,
Shekhar
,
R.
, and
Ghoshdastidar
,
P. S.
,
2015
, “
On the Design and Evaluation of Open Volumetric Air Receiver for Process Heat Applications
,”
Sol. Energy
,
121
, pp.
41
55
.
31.
Sharma
,
P.
,
Chandra
,
L.
,
Ghoshdastidar
,
P. S.
, and
Shekhar
,
R.
,
2020
, “
A Novel Approach for Modelling Fluid Flow and Heat Transfer in an Open Volumetric Air Receiver Using ANSYS-FLUENT
,”
Sol. Energy
,
204
, pp.
246
255
.
32.
Lavoie
,
Y.
,
Charette
,
A.
, and
Lacroix
,
M.
,
1995
, “
Three-Dimensional Modeling of Transient Heat Transfer on a Soaking Pit
,”
Numer. Heat Transf. A: Appl.
,
28
(
5
), pp.
605
617
.
33.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Introduction to Heat Transfer
, 7th ed.,
Wiley
,
New York
.
34.
Hammock
,
G. L.
,
2011
, “
Cross-Flow, Staggered-Tube Heat Exchanger Analysis for High Enthalpy Flows
,”
Master of Technology Thesis
,
University of Tennessee Space Institute
.
Tennessee
, USA.
35.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2006
, “
Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4831
4838
.
36.
Kumar
,
D.
,
2013
, “
Design and Evaluation of Experimental Thermal Energy Storage
,”
Master of Technology Thesis
,
Indian Institute of Technology Jodhpur
,
Jodhpur, India
.
37.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Design of Packed bed Thermal Energy Storage Systems for High-Temperature Industrial Process Heat
,”
Appl. Energy
,
137
, pp.
812
822
.
38.
Heaton
,
H. S.
,
Reynolds
,
W. C.
, and
Kays
,
W. M.
,
1964
, “
Heat Transfer in Annular Passages. Simultaneous Development of Velocity and Temperature Fields in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
763
781
.
39.
Sachdeva
,
M.
, and
Chandra
,
L.
,
2018
,
Concentrated Solar Thermal Energy Technologies
,
Springer Nature
,
Singapore
, pp.
235
249
.
40.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks–Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
.
41.
Kocak
,
B.
, and
Paksoy
,
H.
,
2020
, “
Performance of Laboratory Scale Packed-Bed Thermal Energy Storage Using New Demolition Waste Based Sensible Heat Materialchs for Industrial Solar Applications
,”
Sol. Energy
,
211
, pp.
1335
1346
.
42.
Türkakar
,
G.
,
2021
, “
Performance Analysis and Optimal Charging Time Investigation of Solar Air Heater With Packed Bed Sensible Heat Storage Device
,”
Sol. Energy
,
224
, pp.
718
729
.
43.
Warkhade
,
G. S.
,
Babu
,
A. V.
,
Mane
,
S.
, and
Ganesh Babu
,
K.
,
2016
, “
Experimental Investigation of Sensible Thermal Energy Storage in Small Sized, Different Shaped Concrete Material Packed Bed
,”
World J. Eng.
,
13
(
5
), pp.
386
393
.
44.
Shekhar
,
S.
, and
Ishan
,
P.
,
2012
, “Direct Normal Irradiance (DNI): Inter-Comparability of Weather Databases in Context of India,”
Compendium of the National Training Programme on RET Screen International Software for Evaluation of Renewable Energy Projects
, pp.
32
59
. https://www.researchgate.net/publication/257930615_Direct_Normal_Irradiance_DNI_Intercomparability_of_Weather_Databases_in_Context_of_India
You do not currently have access to this content.