Abstract

This paper investigates a solar air heater’s thermohydraulic and thermogeometric performances with an artificially roughened absorber plate with Joukowski airfoil ribs. The rib height and shape have a bearing on the overall performance of the air heater. Joukowski airfoil ribs of different sizes are generated from a circular rib of a radius of 1 mm using conformal mapping. Simulations are performed for the turbulent flow of air through the roughened duct in the Reynolds number (Re) range of 4000 ≤ Re ≤ 15,000 using ansys fluent version 2020. The renormalization group kinetic energy-turbulence dissipation rate (RNGκε) model with enhanced wall treatment (EWT) has been employed to model the turbulent flow. The grid refinement study is performed to optimize the mesh size and estimate the numerical solution error. The proposed rib design is tested for both headwind and tailwind flow arrangements. The tailwind performance is better for smaller-size Joukowski ribs. However, the medium- and large-size Joukowski ribs perform better in headwind configurations. At low Re, heat transfer is more dominant than friction leading to higher thermohydraulic performance, whereas, at high Re, the reverse trend is observed.

References

1.
Suman
,
S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
192
210
.
2.
Reddy
,
D. S.
, and
Khan
,
M. K.
,
2022
, “
Stationary Point Focus Solar Concentrators—A Review
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5678
5702
.
3.
Zheng
,
S.
,
Ji
,
T.
,
Xie
,
G.
, and
Sundén
,
B.
,
2014
, “
On the Improvement of the Poor Heat Transfer Lee-Side Regions of Square Cross-Section Ribbed Channels
,”
Numer. Heat Transf.; A: Appl.
,
66
(
9
), pp.
963
989
.
4.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
5.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Sol. Energy
,
41
(
6
), pp.
555
560
.
6.
Hans
,
V. S.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2009
, “
Performance of Artificially Roughened Solar Air Heaters—A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1854
1869
.
7.
Singh
,
I.
, and
Singh
,
S.
,
2018
, “
A Review of Artificial Roughness Geometries Employed in Solar Air Heaters
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
405
425
.
8.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid. Sci.
,
11
(
3
), pp.
295
309
.
9.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Kumar
,
S.
,
2021
, “
Critical Review of Ribbed Solar Air Heater and Performance Evaluation of Various V-Rib Configuration
,”
Renewable Sustainable Energy Rev.
,
142
, p.
110871
.
10.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renewable Energy
,
25
(
3
), pp.
341
369
.
11.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
331
.
12.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Performance Evaluation of Solar Air Heater With Novel Hyperbolic Rib Geometry
,”
Renewable Energy
,
105
, pp.
786
797
.
13.
Momin
,
A. M. E.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3383
3396
.
14.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With W-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
.
15.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2012
, “
Investigations on Thermo-Hydraulic Performance Due to Flow-Attack-Angle in V-Down Rib with Gap in a Rectangular Duct of Solar Air Heater
,”
Appl. Energy
,
97
, pp.
907
912
.
16.
Kumar
,
A.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2012
, “
Experimental Investigation on Heat Transfer and Fluid Flow Characteristics of Air Flow in a Rectangular Duct With Multi V-Shaped Rib With Gap Roughness on the Heated Plate
,”
Sol. Energy
,
86
(
6
), pp.
1733
1749
.
17.
Bharadwaj
,
G.
,
Kaushal
,
M.
, and
Goel
,
V.
,
2013
, “
Heat Transfer and Friction Characteristics of an Equilateral Triangular Solar Air Heater Duct Using Inclined Continuous Ribs as Roughness Element on the Absorber Plate
,”
Int. J. Sustainable Energy
,
32
(
6
), pp.
515
530
.
18.
Yadav
,
S.
, and
Kaushal
,
M.
,
2013
, “
Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Protrusions as Roughness Elements on Absorber Plate
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
34
41
.
19.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Solar Air Heater With Hyperbolic Ribs: 3D Simulation With Experimental Validation
,”
Renewable Energy
,
113
, pp.
357
368
.
20.
Bhuvad
,
S. S.
,
Azad
,
R.
, and
Lanjewar
,
A.
,
2022
, “
Thermal Performance Analysis of Apex-Up Discrete Arc Ribs Solar Air Heater—An Experimental Study
,”
Renewable Energy
,
185
, pp.
403
415
.
21.
Kumar
,
A.
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Investigations for Efficient Design of a New Counter Flow Double-Pass Curved Solar Air Heater
,”
Renewable Energy
,
185
, pp.
759
770
.
22.
Karwa
,
R.
,
2022
, “
Enhanced Heat Transfer Performance of Multiple Triangular Air Flow Passages in Parallel With Inclined Fins for Flat Plate Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051003
.
23.
Katoch
,
H.
,
Rathore
,
S. K.
, and
Mund
,
C.
,
2023
, “
Numerical Investigation of Heat Transfer Augmentation of a Curved Solar Air Heater With Inverted T-Shaped Ribs
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031004
.
24.
Jain
,
S. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2022
, “
Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061013
.
25.
Kumar
,
A.
,
Akshayveer
,
S. A. P.
, and
Singh
,
O. P.
,
2022
, “
Effect of Channel Designs and Its Optimization for Enhanced Thermo-Hydraulic Performance of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051009
.
26.
Ngo
,
T. T.
, and
Phu
,
N. M.
,
2020
, “
Computational Fluid Dynamics Analysis of the Heat Transfer and Pressure Drop of Solar Air Heater With Conic-Curve Profile Ribs
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3235
3246
.
27.
Patel
,
Y. M.
,
Jain
,
S. V.
, and
Lakhera
,
V. J.
,
2020
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater Roughened With Reverse NACA Profile Ribs
,”
Appl. Therm. Eng.
,
170
, p.
114940
.
28.
Schlichting
,
H.
, and
Truckenbradt
,
E.
,
1979
,
Aerodynamics of the Aeroplane
,
McGraw-Hill International Book Company
,
New York
.
29.
American Society of Heating, Refrigerating and Air Conditioning Engineers
,
2003
, “
ASHRAE Standard 93 GA30329 Method of Testing to Determine the Thermal Performance of Solar Collectors
,” Atlanta. https://webstore.ansi.org/preview-pages/ASHRAE/preview_ANSI+ASHRAE+93-2003.pdf
30.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
31.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
32.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
33.
Reddy
,
D. S.
,
Khan
,
M.
, and
Awasthi
,
K.
,
2020
, “
Thermohydraulic Performance of a Novel Curved Serpentine Coil
,”
Phys. Fluids
,
32
(
8
), p.
083609
.
34.
Mohamad
,
A. A.
,
1997
, “
High Efficiency Solar Air Heater
,”
Sol. Energy
,
60
(
2
), pp.
71
76
.
You do not currently have access to this content.