Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This work reports on the development of a transient heat transfer model for a prototype reactor of type R2Mx for thermochemical water splitting by temperature and pressure swing of ceria. Key aspects of the R2Mx concept, which are also incorporated in the prototype design, include a movable monolithic redox structure combined with a linear transport system, a reduction reactor, as well as a dedicated oxidation reactor. With the model, the operation of the prototype is simulated for consecutive water splitting cycles, in which ceria is reduced in a continuously heated reactor, oxidized in a separate oxidation reactor, and transported in between the reaction zones. A 2D axisymmetric numerical model of the prototype reactor was developed in ansys mechanical. The model includes heat transfer calculations in combination with an approximated simulation of the transport of the redox material during cyclic operation. It incorporates the chemical reaction by means of a modified heat capacity for ceria and accounts for internal radiation heat transfer inside the porous redox material by applying effective heat transfer properties. A parametric analysis has been undertaken to evaluate different modes of operation of the oxidation reactor. Model results are used to size the power demand of the reduction reactor and vacuum pump, to define durations of the process steps, as well as to assess operational parameters with respect to achieved temperatures. Findings suggest that suitable operation of the prototype reactor involves reduction durations ranging from 8 to 10 min and oxidations of 6 to 10 min.

References

1.
Fuel Cells and Hydrogen 2 Joint Undertaking
,
2019
, “
Hydrogen Roadmap Europe: A sustainable pathway for the European Energy Transition
,” Report,
EU Publications Office
,
Luxembourg
,” https://data.europa.eu/doi/10.2843/341510,
Accessed July 29, 2024
2.
La Calle
,
A.
, and
Bayon
,
A.
,
2019
, “
Annual Performance of a Thermochemical Solar Syngas Production Plant Based on Non-Stoichiometric CeO2
,”
Int. J. Hydrogen Energy
,
44
(
3
), pp.
1409
1424
.
3.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
4.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1
), pp.
63
94
.
5.
Koepf
,
E.
,
Zoller
,
S.
,
Luque
,
S.
,
Thelen
,
M.
,
Brendelberger
,
S.
,
González-Aguilar
,
J.
,
Romero
,
M.
, and
Steinfeld
,
A.
,
2018
, “
Liquid Fuels From Concentrated Sunlight: An Overview on Development and Integration of a 50 kW Solar Thermochemical Reactor and High Concentration Solar Field for the SUN-to-LIQUID Project
,”
SolarPACES
,
Casablanca, Morocco
,
Oct. 2–5
,
American Institute of Physics
, p.
180012
.
6.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.
7.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.
8.
Lidor
,
A.
,
Fend
,
T.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2021
, “
High Performance Solar Receiver–Reactor for Hydrogen Generation
,”
Renewable Energy
,
179
(
16
), pp.
1217
1232
.
9.
Thanda
,
V. K.
,
Fend
,
T.
,
Laaber
,
D.
,
Lidor
,
A.
,
von Storch
,
H.
,
Säck
,
J. P.
,
Hertel
,
J.
, et al
,
2022
, “
Experimental Investigation of the Applicability of a 250 kW Ceria Receiver/Reactor for Solar Thermochemical Hydrogen Generation
,”
Renewable Energy
,
198
(
18
), pp.
389
398
.
10.
Welte
,
M.
,
Barhoumi
,
R.
,
Zbinden
,
A.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2016
, “
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
,”
Ind. Eng. Chem. Res.
,
55
(
40
), pp.
10618
10625
.
11.
Brendelberger
,
S.
, and
Sattler
,
C.
,
2015
, “
Concept Analysis of an Indirect Particle-Based Redox Process for Solar-Driven H2O/CO2 Splitting
,”
Sol. Energy
,
113
(
3
), pp.
158
170
.
12.
Brendelberger
,
S.
,
Holzemer-Zerhusen
,
P.
,
Vega Puga
,
E.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2022
, “
Study of a New Receiver-Reactor Cavity System With Multiple Mobile Redox Units for Solar Thermochemical Water Splitting
,”
Sol. Energy
,
235
(
5
), pp.
118
128
.
13.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.
14.
Diver
,
R. B.
,
Miller
,
J. E.
,
Siegel
,
N. P.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
ASME International Conference on Energy Sustainability
,
Phoenix, AZ
,
May 17–22
, p.
2
.
15.
Patankar
,
A. S.
,
Wu
,
X.
,
Chao
,
W.
,
Tuller
,
H. L.
, and
Ghoniem
,
A.
,
2022
, “
A Reactor Train System for Efficient Solar Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061014
.
16.
Weber
,
A.
,
Grobbel
,
J.
,
Neises-von Puttkamer
,
M.
, and
Sattler
,
C.
,
2023
, “
Swept Open Moving Particle Reactor Including Heat Recovery for Solar Thermochemical Fuel Production
,”
Sol. Energy
,
266
(
18
), pp.
112
178
.
17.
Ermanoski
,
I.
,
Grobbel
,
J.
,
Singh
,
A.
,
Lapp
,
J.
,
Brendelberger
,
S.
,
Roeb
,
M.
,
Sattler
,
C.
,
Whaley
,
J.
,
McDaniel
,
A.
, and
Siegel
,
N. P.
,
2016
, “
Design and Construction of a Cascading Pressure Reactor Prototype for Solar-Thermochemical Hydrogen Production
,”
AIP Conference Proceedings, SolarPACES
,
Cape Town, South Africa
,
Oct. 13–16
, p.
1734
.
18.
Bulfin
,
B.
,
Miranda
,
M.
, and
Steinfeld
,
A.
,
2021
, “
Performance Indicators for Benchmarking Solar Thermochemical Fuel Processes and Reactors
,”
Front. Energy Res.
,
9
, p.
677980
.
19.
Kaneko
,
H.
,
Ishikawa
,
Y.
,
Lee
,
C.
,
Hart
,
G.
,
Stein
,
W.
, and
Tamaura
,
Y.
,
2011
, “
Simulation Study of Tokyo Tech Rotary-Type Solar Reactor on Solar Field Test at CSIRO in Australia
,”
ASME International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10
, pp.
1673
1680
.
20.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
.
21.
Zoller
,
S.
,
Koepf
,
E.
,
Nizamian
,
D.
,
Stephan
,
M.
,
Patané
,
A.
,
Haueter
,
P.
,
Romero
,
M.
, et al
,
2022
, “
A Solar Tower Fuel Plant for the Thermochemical Production of Kerosene From H2O and CO2
,”
Joule
,
6
(
7
), pp.
1606
1616
.
22.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 kW Solar Receiver–Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
.
23.
Säck
,
J.-P.
,
Breuer
,
S.
,
Cotelli
,
P.
,
Houaijia
,
A.
,
Lange
,
M.
,
Wullenkord
,
M.
,
Spenke
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
High Temperature Hydrogen Production: Design of a 750 KW Demonstration Plant for a Two Step Thermochemical Cycle
,”
Sol. Energy
,
135
(
13
), pp.
232
241
.
24.
Brendelberger
,
S.
,
Rosenstiel
,
A.
,
Lopez-Roman
,
A.
,
Prieto
,
C.
, and
Sattler
,
C.
,
2020
, “
Performance Analysis of Operational Strategies for Monolithic Receiver-Reactor Arrays in Solar Thermochemical Hydrogen Production Plants
,”
Int. J. Hydrogen Energy
,
45
(
49
), pp.
26104
26116
.
25.
Lidor
,
A.
,
Aschwanden
,
Y.
,
Häseli
,
J.
,
Reckinger
,
P.
,
Haueter
,
P.
, and
Steinfeld
,
A.
,
2023
, “
High-Temperature Heat Recovery From a Solar Reactor for the Thermochemical Redox Splitting of H2O and CO2
,”
Appl. Energy
,
329
(
1
), p.
120211
.
26.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
27.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2018
, “
Thermodynamic Analyses of Fuel Production via Solar-Driven Non-Stoichiometric Metal Oxide Redox Cycling. Part 2. Impact of Solid–Gas Flow Configurations and Active Material Composition on System-Level Efficiency
,”
Energy Fuels
,
32
(
10
), pp.
10848
10863
.
28.
Miller
,
J. E.
,
McDaniel
,
A. H.
, and
Allendorf
,
M. D.
,
2014
, “
Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
,”
Adv. Energy Mater.
,
4
(
2
), p.
1300469
.
29.
Falter
,
C. P.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2015
, “
Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
122
(
12
), pp.
1296
1308
.
30.
Siegrist
,
S.
,
von Storch
,
H.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Moving Brick Receiver–Reactor: A Solar Thermochemical Reactor and Process Design With a Solid–Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021009
.
31.
Rath
,
A. G.
,
2017
, “Altraform KVR 164-502,” Data Sheet, p.
5
, https://www.rath-group.com/fileadmin/content/Rath-Group/Downloads/Broschueren_Produkte/RATH_VacuumFormedShapes_201710_DE.pdf,
Accessed July 29, 2024
32.
Schäppi
,
R.
,
Rutz
,
D.
,
Dähler
,
F.
,
Muroyama
,
A.
,
Haueter
,
P.
,
Lilliestam
,
J.
,
Patt
,
A.
,
Furler
,
P.
, and
Steinfeld
,
A.
,
2022
, “
Drop-In Fuels From Sunlight and Air
,”
Nature
,
601
(
7891
), pp.
63
68
.
33.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4 kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
(
18
), pp.
373
383
.
34.
Ackermann
,
S.
,
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2017
, “
Reticulated Porous Ceria Undergoing Thermochemical Reduction With High-Flux Irradiation
,”
Int. J. Heat Mass Transfer
,
107
(
4
), pp.
439
449
.
35.
Grobbel
,
J.
,
2019
, “
Modeling Solar Particle Receivers With the Discrete Element Method
,”
Ph.D. thesis
,
RWTH Aachen University, DLR
,
Aachen, NRW, Germany
.
36.
Holzemer-Zerhusen
,
P.
,
Brendelberger
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2021
, “
Oxygen Crossover in Solid–Solid Heat Exchangers for Solar Water and Carbon Dioxide Splitting: A Thermodynamic Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
071301
.
37.
Arifin
,
D.
, and
Weimer
,
A. W.
,
2018
, “
Kinetics and Mechanism of Solar-Thermochemical H2 and CO Production by Oxidation of Reduced CeO2
,”
Sol. Energy
,
160
(
2
), pp.
178
185
.
38.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
,
Hack
,
K.
, et al
,
2016
, “
FactSage Thermochemical Software and Databases, 2010–2016
,”
Calphad
,
54
, pp.
35
53
.
39.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
,
1972
, “
Thermophysical Properties of Matter—The TPRC Data Series. Volume 8. Thermal Radiative Properties—Nonmetallic solids. (Reannouncement)
,”
Data Book
,
United States
, https://www.osti.gov/biblio/5447756,
Accessed July 29, 2024
40.
Ansys® Academic Research Mechanical Release 18.0
, “
Computer Software Material Library
,” ansys-granta-materials-data-brochure.pdf,
Accessed July 29, 2024
41.
Modest
,
M.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
Oxford, UK
.
42.
ASME Research and Technology Committee on Water and Steam in Thermal Systems, Subcommittee on Properties of Steam
,
2000
,
ASME International Steam Tables for Industrial Use Based on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
,
American Society of Mechanical Engineers
,
New York
.
43.
Weber
,
A.
,
2021
, “
Simulation of a New Receiver Reactor Concept
,”
M.Ed. thesis
,
University Koblenz-Landau
,
Koblenz, NRW, Germany
.
44.
Bulfin
,
B.
,
Call
,
F.
,
Lange
,
M.
,
Lübben
,
O.
,
Sattler
,
C.
,
Pitz-Paal
,
R.
, and
Shvets
,
I. V.
,
2015
, “
Thermodynamics of CeO2 Thermochemical Fuel Production
,”
Energy Fuels
,
29
(
2
), pp.
1001
1009
.
You do not currently have access to this content.