Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This investigation provides a comprehensive literature review pertaining to heliostat components and controls as part of the U.S. Department of Energy (DOE), Heliostat Consortium (Heliocon) program. This work presents a detailed assessment of subcomponents, controls and wireless communications elements that comprise various designs of helisotats within concentrating solar power (CSP) installations. Additionally, this work also provides the results of an industry survey, intended to compliment the literature discussion, to provide a gap analysis of the primary technology and cost areas that need to be addressed to help improved to spur concentrating solar power (CSP) bankability. Although the results of the study determined several key areas for development, three strategic areas identified were: (1) the use of advanced composite materials to replace a need for expensive steel within the structure and mirror substrate, (2) employment of closed-loop controls for automated calibration, reduction of commissioning time and O&M hours, reduction of drive requirements, as well as overall cost reduction, and (3) the need for more Heliostat-centric codes and standards to facilitate engineering confidence in the development of new features, cost reductions, or other design iterations to be seamlessly introduced without optical performance problems.

References

1.
Relloso
,
S.
, and
Gutiérrez
,
Y.
,
2017
, “
SENER Molten Salt Tower Technology. Ouarzazate NOOR III Case
,”
AIP Conf. Proc.
,
1850
(
1
), p. 030041.
2.
Coventry
,
J.
, and
Pye
,
J.
,
2014
, “
Heliostat Cost Reduction—Where to Now?
Energy Procedia
,
49
(
1
), pp.
60
70
.
3.
Schell
,
S.
,
2011
, “
Design and Evaluation of Esolar’s Heliostat Fields
,”
Sol. Energy
,
85
(
4
), pp.
614
619
.
4.
Abengoa Corp.
,
2009
, “Abengoa Solar Annual Report,” Volume 1, Abengoa Corp, https://www.abengoa.com/web/en/accionistas_y_gobierno_corporativo/informes_anuales/2009/
5.
Koretz
,
B.
,
2014
, “Flexible Assembly Solar Technology,” NREL Concentrating Solar Power Program Review,” NREL, https://www.energy.gov/sites/prod/files/2014/01/f7/csp_review_meeting_042313_koretz.pdf
6.
Gould
,
W.
,
2011
, “
SolarReserve's 565 MWt Molten Salt Power Towers
,”
16th SolarPACES
,
Granada, Spain
.
7.
Lata
,
J.
,
Alcalde
,
S.
,
Fernández
,
D.
, and
Lekube
,
X.
,
2010
, “
First Surrounding Field of Heliostats in the World for Commercial Solar Power Plants—GEMASOLAR
,”
16th SolarPACES
,
Perpignan, France
.
8.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
, “Heliostat Cost Reduction Study,” SAND2007-3293, 912923, Sandia National Laboratories.
9.
Benyakhlef
,
S.
,
Al Mers
,
A.
,
Merroun
,
O.
,
Bouatem
,
A.
,
Boutammachte
,
N.
,
El Alj
,
S.
,
Ajdad
,
H.
,
Erregueragui
,
Z.
, and
Zemmouri
,
E.
,
2016
, “
Impact of Heliostat Curvature on Optical Performance of Linear Fresnel Solar Concentrators
,”
Renewable Energy
,
89
(
1
), pp.
463
474
.
10.
Mancini
,
T. R.
,
Gary
,
J. A.
,
Kolb
,
G. J.
, and
Ho
,
C. K.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,”
Sandia National Laboratories (SNL)
,
Report No. SAND2011-2419
.
11.
IEC
,
2014
, “Photovoltaic Systems-Design Qualifications of Solar Trackers,” IEC International Standard, https://webstore.iec.ch/publication/7442
12.
Nieffer
,
D.
,
Effertz
,
T.
,
Macke
,
A.
,
Röger
,
M.
,
Weinrebe
,
G.
, and
Ulmer
,
S.
,
2019
, “
Heliostat Testing According to SolarPACES Task III Guideline
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030039
.
13.
Röger
,
M.
,
Kämpgen
,
A.
,
Happich
,
C.
,
Villasante
,
C.
,
Nieffer
,
D.
,
Guillot
,
E.
,
Weinrebe
,
G.
, et al
,
2023
, “SolarPACES Guideline for Heliostat Performance Testing,” Release 1.0, SolarPACES, https://elib.dlr.de/199045/
14.
sbp
,
2022
, “
Kumul Dongfang Tower Stellio
,” sbp sonne, https://www.sbp.solar/project/kumul-dongfang-tower-stellio/?lang=en
15.
Téllez
,
F.
,
Burisch
,
M.
,
Cillasante
,
C.
,
Sanchez
,
M.
,
Sansom
,
C.
,
Kirby
,
P.
, et al
,
2014
, “
State of the Art in Heliostats and Definition of Specifications
,” STAGE-STE Project, Madrid. https://zenodo.org/records/834887
16.
Ardani
,
K.
,
Hunter
,
C.
,
Johnson
,
C.
, and
Koebrich
,
S.
,
2001
, “
Maximizing Solar and Transportation Synergies
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
,
NREL/TP-6A20-80779
, https://www.nrel.gov/docs/fy21osti/80779.pdf
17.
Kolb
,
G. J.
,
Davenport
,
R.
,
Gorman
,
D.
,
Lumia
,
R.
,
Thomas
,
R.
, and
Donnelly
,
M.
,
2007
, “
Heliostat Cost Reduction
,”
ASME 2007 Energy Sustainability Conference
, pp.
1077
1084
.
18.
National Renewable Energy Laboratory (NREL)
, “SolTrace,” https://github.com/NREL/SolTrace
19.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments Due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
(
1
), pp.
604
617
.
20.
von Reeken
,
F.
,
Weinrebe
,
G.
,
Keck
,
T.
, and
Balz
,
M.
,
2016
, “
Heliostat Cost Optimization Study
,”
AIP Conf. Proc.
,
1734
(
1
), p.
160018
.
21.
Potter
,
D. F.
,
Kim
,
J.-S.
,
Khassapov
,
A.
,
Pascual
,
R.
,
Hetherton
,
L.
, and
Zhang
,
Z.
,
2018
, “
Heliosim: An Integrated Model for the Optimization and Simulation of Central Receiver CSP Facilities
,” Santiago, Chile, p. 210011.
22.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
(
9
), pp.
3
37
.
23.
Pfahl
,
A.
,
Randt
,
M.
,
Holze
,
C.
, and
Unterschütz
,
S.
,
2013
, “
Autonomous Light-Weight Heliostat With Rim Drives
,”
Sol. Energy
,
92
(
1
), pp.
230
240
.
24.
Pfahl
,
A.
, and
Uhlemann
,
H.
,
2011
, “
Wind Loads on Heliostats and Photovoltaic Trackers at Various Reynolds Numbers
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
9
), pp.
964
968
.
25.
Armstrong
,
P.
, and
Izygon
,
M.
,
2014
, “
An Innovative Software for Analysis of Sun Position Algorithms
,”
Energy Procedia
,
49
(
1
), pp.
2444
2453
.
26.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “
Cost Update: Commercial and Advanced Heliostat Collectors
,”
NREL/TP-7A40-80482, 1847876
, MainId:42685, https://www.nrel.gov/docs/fy22osti/80482.pdf
27.
Carrascosa
,
M. A.
,
Blázquez
,
J. M.
,
Calle
,
S. N. D. L.
,
Sørensen
,
S. S.
,
Falsig
,
J. J.
,
Gallego
,
J. F.
, and
Rodriguez
,
E.
,
2020
, “
High Quality Heliostats Leading to New Optimal Field Layouts Coupled With an Asymmetric Receiver Geometry
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030008
.
28.
Cardoso
,
J. P.
,
Mutuberria
,
A.
,
Marakkos
,
C.
,
Schoettl
,
P.
,
Osório
,
T.
, and
Les
,
I.
,
2018
, “
New Functionalities for the Tonatiuh Ray-Tracing Software
,”
AIP Conf. Proc.
,
2033
(
1
), p.
210010
.
29.
Ahlbrink
,
N.
,
Belhomme
,
B.
,
Flesch
,
R.
,
Maldonado Quinto
,
D.
,
Rong
,
A.
, and
Schwarzbözl
,
P.
,
2012
, “
STRAL: Fast Ray Tracing Software With Tool Coupling Capabilities for High-Precision Simulations of Solar Thermal Power Plants
,”
Proceedings of the SolarPACES 2012 Conference
,
Marrakesch, Marokko
, https://elib.dlr.de/78440/, Accessed August 11, 2022.
30.
Wang
,
Y.
, and
Pye
,
J.
,
2021
, “Tracer 1.0.0,” Australian National University Solar Thermal Group, https://github.com/anustg/Tracer
31.
Magdaleno López
,
C.
,
Pérez Bueno
,
J. D. J.
,
Cabello Mendez
,
J. A.
,
Hernández Leos
,
R.
,
Mendoza López
,
M. L.
,
Sosa Domínguez
,
A.
, and
Meas Vong
,
Y.
,
2022
, “
Deterioration of Novel Silver Coated Mirrors on Polycarbonate Used for Concentrated Solar Power
,”
Sustainability
,
14
(
24
), p.
16360
.
32.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
, “Heliostat Cost Reduction Study,” SAND2007-3293, 912923, Sandia National Laboratories.
33.
Meso-Star
,
2021
, “Solstice 0.9.1,” https://www.meso-star.com/projects/solstice/solstice.html, Accessed August 25, 2022.
34.
Davidson
,
J. H.
,
2022
,
Handbook of Solar Thermal Technologies: Principles and Applications
, Vol.
3
,
World Scientific
,
Singapore
.
35.
Mammar
,
M.
,
Djouimaa
,
S.
,
Hamidat
,
A.
,
Bahria
,
S.
, and
El Ganaoui
,
M.
,
2017
, “
Wind Effect on Full-Scale Design of Heliostat with Torque Tube
,”
Mech. Indus.
,
18
(
3
), p.
312
.
36.
Benammar
,
S.
, and
Tee
,
K. F.
,
2019
, “
Structural Reliability Analysis of a Heliostat Under Wind Load for Concentrating Solar Power
,”
Sol. Energy
,
181
(
1
), pp.
43
52
.
37.
SolarPACES
,
2001
, “CSP Projects Around the World – SolarPACES,” https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world/
38.
Bender
,
W.
,
2013
, “Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011–December 6, 2012,” NREL/SR-5200-57611, 1068630, https://www.nrel.gov/docs/fy13osti/57611.pdf
39.
Sanchez
,
G.
,
Serrano
,
A.
,
Cancillo
,
M. L.
, and
Garcia
,
J. A.
,
2015
, “
Pyranometer Thermal Offset: Measurement and Analysis
,”
J. Atmos. Ocean. Technol.
,
32
(
2
), pp.
234
246
.
40.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
(
9
), pp.
3
37
.
41.
Pfahl
,
A.
,
Randt
,
M.
,
Holze
,
C.
, and
Unterschütz
,
S.
,
2013
, “
Autonomous Light-Weight Heliostat With Rim Drives
,”
Sol. Energy
,
92
(
1
), pp.
230
240
.
42.
Davila-Peralta
,
C.
,
Rademacher
,
M.
,
Emerson
,
N.
,
Chavez-Lopez
,
G.
,
Sosa
,
P.
,
Cabanillas
,
R.
,
Peon-Anaya
,
R.
,
Flores-Montijo
,
N.
,
Didato
,
N.
, and
Angel
,
R.
,
2020
, “
Progress in Track-Mounted Heliostat
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030011
.
43.
Kolb
,
G. J.
,
Davenport
,
R.
,
Gorman
,
D.
,
Lumia
,
R.
,
Thomas
,
R.
, and
Donnelly
,
M.
,
2007
, “
Heliostat Cost Reduction
,”
ASME 2007 Energy Sustainability Conference
, pp.
1077
1084
.
44.
Peterka
,
J. A.
and
Derickson
,
R. G.
,
1992
, “
Wind Load Design Methods for Ground-Based Heliostats and Parabolic Dish Collectors
,” SAND-92-7009, Sandia National Laboratories, Albuquerque, NM. https://www.osti.gov/biblio/7105290.
45.
Agarwal
,
N.
,
Raj
,
M.
, and
Bhattacharya
,
J.
,
2020
, “
Solar Tower on an Uneven Terrain: Methodology and Case Study
,”
Renewable Energy
,
161
(
1
), pp.
543
558
.
46.
Coventry
,
J.
,
Campbell
,
J.
,
Xue
,
Y. P.
,
Hall
,
C.
,
Kim
,
J. S.
,
Pye
,
J.
,
Burgess
,
G.
, et al
,
2016
, “
Heliostat Cost Down Scoping Study – Final Report
,” University of Tasmania Report.
47.
Little
,
C.
,
Small
,
D.
, and
Yelloowhair
,
J.
,
2021
, “
LiDAR For Heliostat Optical Error Assessment
,”
Sandia National Laboratories
,
Albuquerque, NM
,
Report No. SAND2021-5956R
.
48.
Sattler
,
J. C.
,
Röger
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
,
Macke
,
A.
,
Raeder
,
C.
, and
Göttsche
,
J.
,
2020
, “
Review of Heliostat Calibration and Tracking Control Methods
,”
Sol. Energy
,
207
(
1
), pp.
110
132
.
49.
Burisch
,
M.
,
Olano
,
X.
,
Sanchez
,
M.
,
Olarra
,
A.
,
Villasante
,
C.
,
Olasolo
,
D.
,
Monterreal
,
R.
,
Enrique
,
R.
, and
Fernández
,
J.
,
2018
, “
Scalable Heliostat Calibration System (SHORT)—Calibrate a Whole Heliostat Field in a Single Night
,”
AIP Conf. Proc.
,
2033
(
2
), p.
040009
.
50.
Minis
,
N.
,
Rosenbluth
,
E.
,
Hayut
,
R.
, and
Am-Shallem
,
M.
,
2019
, “
Spatial DNI Measurement for Accurate Solar Flux Control in Megalim 121 MWe Solar Receiver Power Plant
,”
24th SolarPACES 2019
,
Casablanca, Morocco
.
51.
Blume
,
K.
,
Röger
,
M.
,
Schlichting
,
T.
,
Macke
,
A.
, and
Pitz-Paal
,
R.
,
2020
, “
Dynamic Photogrammetry Applied to a Real Scale Heliostat: Insights Into the Wind-Induced Behavior and Effects on the Optical Performance
,”
Sol. Energy
,
212
(
2
), pp.
297
308
.
52.
Pottler
,
K.
,
Lupfert
,
E.
,
Johnston
,
G. H.
, and
Shortis
,
M. R.
,
2005
, “
Photogrammetry: A Powerful Tool for Geometric Analysis of Solar Concentrators and Their Components
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
94
101
.
53.
Röger
,
M.
,
Prahl
,
C.
, and
Ulmer
,
S.
,
2008
, “
Fast Determination of Heliostat Shape and Orientation by Edge Detection and Photogrammetry
,”
14th SolarPACES 2008
,
Las Vegas, NV
.
54.
Shortis
,
M. R.
, and
Johnston
,
G. H. G.
,
1996
, “
Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part I: Measurements of Surfaces
,”
ASME J. Sol. Energy Eng.
,
118
(
3
), pp.
146
150
.
55.
Burke
,
J.
,
Li
,
W.
,
Heimsath
,
A.
,
von Kopylow
,
C.
, and
Bergmann
,
R. B.
,
2013
, “
Qualifying Parabolic Mirrors with Deflectometry
,”
J. Eur. Opt. Soc. Rapid Publ.
,
8
, p. 13014.
56.
Montecchi
,
M.
,
Cara
,
G.
, and
Benedetti
,
A.
,
2020
, “
VISproLF: Self-Calibrating Instrument for Measuring 3D Shape of Linear Fresnel Facets
,”
Rev. Sci. Instrum.
,
91
(
8
), p. 083109.
57.
Hanrieder
,
N.
,
Sengupta
,
M.
,
Xie
,
Y.
,
Wilbert
,
S.
, and
Pitz-Paal
,
R.
,
2016
, “
Modeling Beam Attenuation in Solar Tower Plants Using Common DNI Measurements
,”
Sol. Energy
,
129
(
1
), pp.
244
255
.
58.
Sánchez
,
M.
,
Fernández-Peruchena
,
C. M.
,
Bernardos
,
A.
,
Heras
,
C.
,
Chueca
,
R.
, and
Salinas
,
I.
,
2019
, “
High-Accuracy Real-Time Monitoring of Solar Radiation Attenuation in Commercial Solar Towers
,”
24th SolarPACES 2019
,
Casablanca, Morocco
.
59.
Sattler
,
J. C.
,
Röger
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
,
Macke
,
A.
,
Raeder
,
C.
, and
Göttsche
,
J.
,
2020
, “
Review of Heliostat Calibration and Tracking Control Methods
,”
Sol. Energy
,
207
(
1
), pp.
110
132
.
60.
Malan
,
K. J.
,
2014
, “
A Heliostat Field Control System
,” Doctoral dissertation, Stellenbosch University.
61.
Swart
,
B. D.
,
2017
, “
A Method for Accurate Measurement of Heliostat Mirror Orientation
,” Doctoral dissertation, Stellenbosch University.
62.
Hanrieder
,
N.
,
Wilbert
,
S.
,
Pitz-Paal
,
R.
,
Emde
,
C.
,
Gasteiger
,
J.
,
Mayer
,
B.
, and
Polo
,
J.
,
2015
, “
Atmospheric Extinction in Solar Tower Plants: Absorption and Broadband Correction for MOR Measurements
,”
Atmos. Meas. Tech.
,
8
(
8
), pp.
3467
3480
.
63.
Fernández García
,
A.
,
2021
, “Soiling Measurements of Solar Reflectors: Portable Reflectometers to Measure Soiled Reflectors in Solar Fields,” SolarPACES Task III Solar Technology and Advanced Applications Report, SolarPACES, https://www.solarpaces.org/wp-content/uploads/Document-2_SolarPACES_Portable-Reflectometers.pdf
64.
Glatzmaier
,
G.
,
Wendelin
,
T.
, and
Zhu
,
G.
, 2014, “Multi-Heliostat Wireless Communication Assessment,” National Renewable Energy Laboratory, NREL_25830.
65.
Alami Merrouni
,
A.
,
Conceição
,
R.
,
Mouaky
,
A.
,
Silva
,
H. G.
, and
Ghennioui
,
A.
,
2020
, “
CSP Performance and Yield Analysis Including Soiling Measurements for Morocco and Portugal
,”
Renewable Energy
,
162
(
1
), pp.
1777
1792
.
66.
Collares
,
M.
, 2014, “State of the Art in Heliostats and Definition of Specifications,” STAGE-STE Project, EERA Report 2014.
67.
Amsbeck
,
L.
,
Buck
,
R.
,
Pfahl
,
A.
, and
Uhlig
,
R.
,
2008
, “
Optical Performance and Weight Estimation of a Heliostat with Ganged Facets
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011010
.
68.
Relloso
,
S.
, and
Gutiérrez
,
Y.
,
2017
, “
SENER Molten Salt Tower Technology. Ouarzazate NOOR III Case
,”
22nd SolarPACES 2017, SolarPACES, AIP Conference Proceedings
,
Abu Dhabi, United Arab Emirates
.
69.
Emes
,
M.
,
Yellapantula
,
S.
,
Sment
,
J.
,
Armijo
,
K.
,
Muller
,
M.
,
Mehos
,
M.
,
Brost
,
R.
, and
Arjomandi
,
M.
,
2024
, “
Heliostat Consortium: Gap Analysis on State of the Art in Wind Load Design
,”
ASME J. Sol. Energy Eng.
,
146
(
6
), p.
061001
.
70.
Nudehi
,
S. S.
,
Duncan
,
G. S.
, and
Venstrom
,
L. J.
,
2019
, “
Heliostat Attitude Control Strategy in the Solar Energy Research Facility of Valparaiso University
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051005
.
You do not currently have access to this content.