Abstract

The utilization of solar energy as a renewable energy source has been a subject of interest for researchers in recent years. Despite recent advances in promoting solar energy, its intermittent and unpredictable nature limits its widespread utilization in manufacturing facilities. This research paper focuses on utilizing solar energy for efficient scheduling of manufacturing processes while keeping friendly environmental conditions for the workers. The work proposes an energy-aware dynamic scheduling procedure to minimize production and building costs by optimizing the utilization of an onsite photovoltaic (PV) system energy generation. The proposed method considers various factors such as the availability of solar energy, energy consumption of different manufacturing processes, and thermal requirements of the building. A stochastic energy prediction algorithm is developed to forecast the hourly one-day-ahead solar resources based on year-long solar radiation observations collected from an outdoor solar test facility in Qatar. This study shows that using the forecasted PV output improves the overall efficiency of manufacturing processes and building thermal requirements, thus achieving up to a 20% reduction in energy costs. These findings help the development of sustainable manufacturing systems and decrease the negative environmental impacts from industries.

References

1.
Myles
,
A.
,
Mustafa
,
B.
,
Yang
,
C.
, and
de Coninck
,
H.
,
2018
,
Global Warming of 1.5 °C. Summary for Policymakers
,
IPPC
.
2.
Jayal
,
A. D.
,
Badurdeen
,
F.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2010
, “
Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
3
), pp.
144
152
.
3.
Gunasekaran
,
A.
, and
Spalanzani
,
A.
,
2012
, “
Sustainability of Manufacturing and Services: Investigations for Research and Applications
,”
Int. J. Prod. Econ.
,
140
(
1
), pp.
35
47
.
4.
Garetti
,
M.
, and
Taisch
,
M.
,
2012
, “
Sustainable Manufacturing: Trends and Research Challenges
,”
Prod. Plan. Control.
,
23
(
2–3
), pp.
83
104
.
5.
Tayal
,
A.
, and
Singh
,
S. P.
,
2017
, “
Designing Flexible Stochastic Dynamic Layout: An Integrated Firefly and Chaotic Simulated Annealing-Based Approach
,”
Glob. J. Flex. Syst. Manag.
,
18
(
2
), pp.
89
98
.
6.
Yang
,
L.
,
Deuse
,
J.
, and
Jiang
,
P.
,
2013
, “
Multiple-Attribute Decision-Making Approach for an Energy-Efficient Facility Layout Design
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5–8
), pp.
795
807
.
7.
Nunes
,
B.
, and
Bennett
,
D.
,
2010
, “
Green Operations Initiatives in the Automotive Industry: An Environmental Reports Analysis and Benchmarking Study
,”
Benchmarking
,
17
(
3
), pp.
396
420
.
8.
US Department of Commerce
,
2012
, “
How Does Commerce Define Sustainable Manufacturing
,”
United States Department of Commerce
.
9.
Murdock
,
H. E.
,
Gibb
,
D.
, and
André
,
T.
,
2019
.
Renewables 2019 Global Status Report
, REN 21.
10.
Lin
,
Q.
,
Liu
,
L. J.
,
Yuan
,
M.
,
Ge
,
L. J.
,
Wang
,
Y. H.
, and
Zhang
,
M.
,
2021
, “
Choice of the Distributed Photovoltaic Power Generation Operating Mode for a Manufacturing Enterprise: Surrounding Users Vs a Power Grid
,”
J. Clean. Prod.
,
293
, p.
126199
.
11.
Belay Kebede
,
A.
, and
Biru Worku
,
G.
,
2020
, “
Comprehensive Review and Performance Evaluation of Maximum Power Point Tracking Algorithms for Photovoltaic System
,”
Glob. Energy Interconnect.
,
3
(
4
), pp.
398
412
.
12.
Elsheikh
,
A. H.
, and
Abd Elaziz
,
M.
,
2019
, “
Review on Applications of Particle Swarm Optimization in Solar Energy Systems
,”
Int. J. Environ. Sci. Technol.
,
16
(
2
), pp.
1159
1170
13.
Oh
,
M.
, and
Park
,
H. D.
,
2019
, “
Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University
,”
Energies
,
12
(
17
), p.
3262
.
14.
Asadi
,
E.
, and
Sadjadi
,
S. J.
,
2017
, “
Optimization Methods Applied to Renewable and Sustainable Energy: A Review
,”
Uncertain Supply Chain Manage.
,
5
(
1
), pp.
1
26
.
15.
Al-Shahri
,
O. A.
,
Ismail,
F. B.
,
Hannan,
M. A.
,
Lipu,
M. S. H.
,
Al-Shetwi,
A. Q.
,
Begum
R. A.
,
Al-Muhsen
,
N. F. O.
, and
Soujeri
,
E.
,
2021
, “
Solar Photovoltaic Energy Optimization Methods, Challenges and Issues: A Comprehensive Review
,”
J. Clean. Prod.
,
284
, p.
125465
.
16.
Nguyen
,
T. N.
, and
Müsgens
,
F.
,
2022
, “
What Drives the Accuracy of PV Output Forecasts?
,”
Appl. Energy
,
323
(
February
), p.
119603
.
17.
Sobri
,
S.
,
Koohi-Kamali
,
S.
, and
Rahim
,
N. A.
,
2018
, “
Solar Photovoltaic Generation Forecasting Methods: A Review
,”
Energy Convers. Manag.
,
156
, pp.
459
497
.
18.
Huang
,
C. M. T.
,
Huang
,
Y. C.
, and
Huang
,
K. Y.
,
2014
. “
A Hybrid Method for One-Day Ahead Hourly Forecasting of PV Power Output
,”
Proceedings of 2014 9th IEEE Conference on Industrial Electronics and Applications (ICIEA 2014)
,
Hangzhou, China
,
June 9–11
, pp.
526
531
.
19.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
2
(
1
), pp.
2
10
.
20.
Chanapathi
,
T.
,
Thatikonda
,
S.
,
Pandey
,
V. P.
, and
Shrestha
,
S.
,
2019
, “
Fuzzy-Based Approach for Evaluating Groundwater Sustainability of Asian Cities
,”
Sustain. Cities Soc.
,
44
, pp.
321
331
.
21.
Samaie
,
F.
,
Meyar-Naimi
,
H.
,
Javadi
,
S.
, and
Feshki-Farahani
,
H.
,
2020
, “
Comparison of Sustainability Models in Development of Electric Vehicles in Tehran Using Fuzzy TOPSIS Method
,”
Sustain. Cities Soc.
,
53
, p.
101912
.
22.
Ofori-Ntow Jnr
,
E.
,
Ziggah
,
Y. Y.
, and
Relvas
,
S.
,
2021
, “
Hybrid Ensemble Intelligent Model Based on Wavelet Transform, Swarm Intelligence and Artificial Neural Network for Electricity Demand Forecasting
,”
Sustain. Cities Soc.
,
66
, p.
102679
.
23.
Du
,
W.
,
Zhang
,
Q.
,
Chen
,
Y.
, and
Ye
,
Z.
,
2021
, “
An Urban Short-Term Traffic Flow Prediction Model Based on Wavelet Neural Network With Improved Whale Optimization Algorithm
,”
Sustain. Cities Soc.
,
69
, p.
102858
.
24.
Ahmad
,
T.
, and
Chen
,
H.
,
2020
, “
A Review on Machine Learning Forecasting Growth Trends and Their Real-Time Applications in Different Energy Systems
,”
Sustain. Cities Soc.
,
54
, p.
102010
.
25.
Tayal
,
A.
,
Solanki
,
A.
, and
Singh
,
S. P.
,
2020
, “
Integrated Frame Work for Identifying Sustainable Manufacturing Layouts Based on Big Data, Machine Learning, Meta-Heuristic and Data Envelopment Analysis
,”
Sustain. Cities Soc.
,
62
, p.
102383.
26.
Huang
,
C.-M.
,
Kuo
,
C.-J.
,
Chen
,
S.-J.
, and
Yang
,
S.-P.
,
2015
, “
One-Day-Ahead Hourly Forecasting for Photovoltaic Power Generation Using an Intelligent Method With Weather-Based Forecasting Models
,”
IET Gener. Transm. Distrib.
,
9
(
14
), pp.
1874
1882
.
27.
Zhang
,
Y.
,
Beaudin
,
M.
,
Taheri
,
R.
,
Zareipour
,
H.
, and
Wood
,
D.
,
2015
, “
Day-Ahead Power Output Forecasting for Small-Scale Solar Photovoltaic Electricity Generators
,”
IEEE Trans. Smart Grid
,
6
(
5
), pp.
2253
2262
.
28.
Houchati
,
M.
,
Beitelmal
,
A. H.
, and
Khraisheh
,
M.
,
2022
, “
Predictive Modeling for Rooftop Solar Energy Throughput: A Machine Learning-Based Optimization for Building Energy Demand Scheduling
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011302
.
29.
Visser
,
L.
,
AlSkaif
,
T.
, and
van Sark
,
W.
,
2022
, “
Operational Day-Ahead Solar Power Forecasting for Aggregated PV Systems With a Varying Spatial Distribution
,”
Renew. Energy.
,
183
, pp.
267
282
.
30.
Wang
,
Z.
,
Wang
,
C.
,
Cheng
,
L.
, and
Li
,
G.
,
2022
, “
An Approach for Day-Ahead Interval Forecasting of Photovoltaic Power: A Novel DCGAN and LSTM Based Quantile Regression Modeling Method
,”
Energy Rep.
,
8
, pp.
14020
14033
.
31.
Zhang
,
H.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2015
, “
Energy-Efficient Scheduling of Multiple Manufacturing Factories Under Real-Time Electricity Pricing
,”
CIRP Ann.
,
64
(
1
), pp.
41
44
.
32.
Zhai
,
Y.
,
Biel
,
K.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2017
, “
Dynamic Scheduling of a Flow Shop With On-Site Wind Generation for Energy Cost Reduction Under Real Time Electricity Pricing
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
41
44
.
33.
Bruzzone
,
A. A. G.
,
Anghinolfi
,
D.
,
Paolucci
,
M.
, and
Tonelli
,
F.
,
2012
, “
Energy-Aware Scheduling for Improving Manufacturing Process Sustainability: A Mathematical Model for Flexible Flow Shops
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
459
462
.
34.
Zhang
,
Y.
,
Islam
,
M. M.
,
Sun
,
Z.
,
Yang
,
S.
,
Dagli
,
C.
, and
Xiong
,
H.
,
2018
, “
Optimal Sizing and Planning of Onsite Generation System for Manufacturing in Critical Peaking Pricing Demand Response Program
,”
Int. J. Prod. Econ.
,
206
, pp.
261
267
.
35.
Scholz-Reiter
,
B.
,
Hildebrandt
,
T.
, and
Tan
,
Y.
,
2013
, “
Effective and Efficient Scheduling of Dynamic Job Shops—Combining the Shifting Bottleneck Procedure With Variable Neighbourhood Search
,”
CIRP Ann.—Manuf. Technol.
,
62
(
1
), pp.
423
426
.
36.
Freitag
,
M.
, and
Hildebrandt
,
T.
,
2016
, “
Automatic Design of Scheduling Rules for Complex Manufacturing Systems by Multi-Objective Simulation-Based Optimization
,”
CIRP Ann.—Manuf. Technol.
,
65
(
1
), pp.
433
436
.
37.
Liu
,
Z.
, and
Du
,
Y.
,
2023
, “
Evolution Towards Dispatchable PV Using Forecasting, Storage, and Curtailment: A Review
,”
Electr. Power Syst. Res.
,
223
, p.
109554
.
38.
Li
,
X.
,
Ma
,
L.
,
Chen
,
P.
,
Xu
,
H.
,
Xing
,
Q.
,
Yan
,
J.
,
Lu
,
S.
,
Fan
,
H.
,
Yang
,
L.
, and
Cheng
,
Y.
,
2022
, “
Probabilistic Solar Irradiance Forecasting Based on XGBoost
,”
Energy Rep.
,
8
, pp.
1087
1095
.
39.
Jawahir
,
I. S.
, and
Jayal
,
A. D.
,
2011
, “
Product and Process Innovation for Modeling of Sustainable Machining Processes
,”
Adv. Sustain. Manuf.
, pp.
301
307
.
40.
Giret
,
A.
,
Trentesaux
,
D.
, and
Prabhu
,
V.
,
2015
, “
Sustainability in Manufacturing Operations Scheduling: A State of the Art Review
,”
J. Manuf. Syst.
,
37
, pp.
126
140
.
41.
Javadi
,
M. S.
,
Gough
,
M.
,
Lotfi
,
M.
,
Esmaeel Nezhad
,
A.
,
Santos
,
S. F.
, and
Catalão
,
J. P. S.
,
2020
, “
Optimal Self-Scheduling of Home Energy Management System in the Presence of Photovoltaic Power Generation and Batteries
,”
Energy
,
210
, p.
118568
.
42.
Wang
,
J.
,
Li
,
P.
,
Fang
,
K.
, and
Zhou
,
Y.
,
2018
, “
Robust Optimization for Household Load Scheduling With Uncertain Parameters
,”
Appl. Sci.
,
8
(
4), p.
575
.
43.
Ogunsola
,
O. T.
, and
Song
,
L.
,
2012
, “
Review and Evaluation of Using RC Thermal Modeling of Cooling Load Prediction for HVAC System Control Purpose
,” ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Vol. 45233, pp.
735
743
.
44.
Mirjalili
,
S.
,
Mirjalili
,
S. M.
, and
Hatamlou
,
A.
,
2016
, “
Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization
,”
Neural Comput. Appl.
,
27
(
2
), pp.
495
513
.
45.
Pedrasa
,
M. A. A.
,
Spooner
,
T. D.
, and
MacGill
,
I. F.
,
2010
, “
Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services
,”
IEEE Trans. Smart Grid
,
1
(
2
), pp.
134
143
.
You do not currently have access to this content.