Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper introduces a simplified simulation environment to model the reciprocal thermal interactions between urban air and buildings. Specifically, the simulation environment accounts for several factors that are responsible for the formation of the urban heat island and its effects. Dynamic modeling of urban components including both urban canopy and boundary layers as well as ground medium and building energy systems is integrated within the developed simulation environment. A validation analysis of the developed simulation environment is carried out using field data obtained during the summer for the City of Toulouse, France. The developed simulation environment can be applied to evaluate various mitigation options to reduce the urban heat island effects and improve energy efficiency levels of urban built environments. The main limitations of the developed simulation environment as well as recommendations to enhance its performance have been outlined throughout the paper.

References

1.
Baklanov
,
A.
,
Lawrence
,
M.
,
Pandis
,
S.
,
Mahura
,
A.
,
Finardi
,
S.
,
Moussiopoulos
,
N.
,
Beekmann
,
M.
, et al
,
2010
, “
MEGAPOLI: Concept of Multi-scale Modelling of Megacity Impact on Air Quality and Climate
,”
Adv. Sci. Res.
,
4
(
1
), pp.
115
120
.
2.
UN-HABITAT
,
2012
,
State of the World’s Cites 2012/2013: United Nations Human Settlements Programme
,
United Nations Human Settlements Program
,
Nairobi, Kenya
, p.
152
.
3.
United Nations
,
2014
,
World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352)
.
4.
Duarte
,
D. H. S.
,
Shinzato
,
P.
,
dos Santos Gusson
,
C.
, and
Alves
,
C. A.
,
2015
, “
The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate
,”
Urban Clim.
,
14
, pp.
224
239
.
5.
Madlener
,
R.
, and
Sunak
,
Y.
,
2011
, “
Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management?
,”
Sustain. Cities Soc.
,
1
(
1
), pp.
45
53
.
6.
Mirzaei
,
P. A.
, and
Haghighat
,
F.
,
2010
, “
Approaches to Study Urban Heat Island—Abilities and Limitations
,”
Build. Environ.
,
45
(
10
), pp.
2192
2201
.
7.
Gago
,
E. J.
,
Roldan
,
J.
,
Pacheco-Torres
,
R.
, and
Ordóñez
,
J.
,
2013
, “
The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects
,”
Renew. Sustain. Energy Rev.
,
25
, pp.
749
758
.
8.
Mirzaei
,
P. A.
,
2015
, “
Recent Challenges in Modelling of Urban Heat Island
,”
Sustain. Cities Soc.
,
19
, pp.
200
206
.
9.
Ameer
,
B.
, and
Krarti
,
M.
,
2022
, “
Review of Urban Heat Island and Building Energy Modeling Approaches
,”
ASME J. Eng. Sustain. Build. Cities
,
3
(
1
), p.
011003
.
10.
Asawa
,
T.
,
Hoyano
,
A.
, and
Nakaohkubo
,
K.
,
2008
, “
Thermal Design Tool for Outdoor Spaces Based on Heat Balance Simulation Using a 3D-CAD System
,”
Build. Environ.
,
43
(
12
), pp.
2112
2123
.
11.
Kuttler
,
W.
,
2008
, “The Urban Climate—Basic and Applied Aspects,”
Urban Ecology: An International Perspective on the Interaction Between Humans and Nature
,
J. M.
Marzluff
,
E.
Schulenberger
,
W.
Endlicher
,
M.
Alberti
,
G.
Bradley
, et al
,
Springer
,
Boston, MA
, pp.
233
248
.
12.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Wang
,
M.
,
2014
, “
Anthropogenic Heating of the Urban Environment Due to Air Conditioning
,”
J. Geophys. Res. Atmos.
,
119
(
10
), pp.
5949
5965
.
13.
Kondo
,
A.
,
Ueno
,
M.
,
Kaga
,
A.
, and
Yamaguchi
,
K.
,
2001
, “
The Influence of Urban Canopy Configuration on Urban Albedo
,”
Boundary-Layer Meteorol.
,
100
(
2
), pp.
225
242
.
14.
De Munck
,
C.
,
Pigeon
,
G.
,
Masson
,
V.
,
Meunier
,
F.
,
Bousquet
,
P.
,
Tréméac
,
B.
,
Merchat
,
M.
,
Poeuf
,
P.
, and
Marchadier
,
C.
,
2013
, “
How Much Can Air Conditioning Increase Air Temperatures for a City Like Paris, France?
,”
Int. J. Climatol.
,
33
(
1
), pp.
210
227
.
15.
Bueno
,
B.
,
Norford
,
L.
,
Hidalgo
,
J.
, and
Pigeon
,
G.
,
2013
, “
The Urban Weather Generator
,”
J. Build. Perform. Simul.
,
6
(
4
), pp.
269
281
.
16.
Ahmad
,
A.
,
2004
, “
Energy Simulation for a Typical House Built With Different Types of Masonry Building Materials
,”
Arab. J. Sci. Eng.
,
29
(
2
), pp.
113
126
.
17.
Al-Ragom
,
F.
,
2003
, “
Retrofitting Residential Buildings in Hot and Arid Climates
,”
Energy Convers. Manage.
,
44
(
14
), pp.
2309
2319
.
18.
Alaidroos
,
A.
, and
Krarti
,
M.
,
2015
, “
Optimal Design of Residential Building Envelope Systems in the Kingdom of Saudi Arabia
,”
Energy Build.
,
86
, pp.
104
117
.
19.
Al-Homoud
,
M. S.
,
2004
, “
The Effectiveness of Thermal Insulation in Different Types of Buildings in Hot Climates
,”
J. Therm. Envel. Build. Sci.
,
27
(
3
), pp.
235
247
.
20.
Al-saadi
,
S. N.
, and
Budaiwi
,
I. M.
,
2007
, “
Performance-Based Envelope Design for Residential Buildings in Hot Climates SAAD Group, Design Office, Saudi Arabia Architectural Engineering Department, King Fahd University of Petroleum and Minerals
,”
Building Simulation 2007
,
Dhahran, Kingdom of Saudi Arabia
, pp.
1726
1733
.
21.
Ameer
,
B.
, and
Krarti
,
M.
,
2016
, “
Impact of Subsidization on High Energy Performance Designs for Kuwaiti Residential Buildings
,”
Energy Build.
,
116
, pp.
249
262
.
22.
Huber
,
J.
, and
Nytsch-Geusen
,
C.
,
2011
, “
Development of Modeling and Simulation Strategies for Large Scale Urban Districts
,”
Build. Simul., Sydney Aust.
,
1753–1760
, pp.
14
16
.
23.
Cerezo Davila
,
C.
,
Reinhart
,
C. F.
, and
Bemis
,
J. L.
,
2016
, “
Modeling Boston: A Workflow for the Efficient Generation and Maintenance of Urban Building Energy Models From Existing Geospatial Datasets
,”
Energy
,
117
, pp.
237
250
.
24.
Reinhart
,
C. F.
, and
Cerezo Davila
,
C.
,
2016
, “
Urban Building Energy Modeling—A Review of a Nascent Field
,”
Build. Environ.
,
97
, pp.
196
202
.
25.
Quan
,
S. J.
,
Wu
,
J.
,
Wang
,
Y.
,
Shi
,
Z.
,
Yang
,
T.
, and
Yang
,
P. P.-J.
,
2016
, “
Urban Form and Building Energy Performance in Shanghai Neighborhoods
,”
Energy Proc.
,
88
, pp.
126
132
.
26.
Targhi
,
M. Z.
, and
Van Dessel
,
S.
,
2015
, “
Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA
,”
Proc. Eng.
,
118
, pp.
1153
1161
.
27.
Tanimoto
,
J.
,
Hagishima
,
A.
, and
Chimklai
,
P.
,
2004
, “
An Approach for Coupled Simulation of Building Thermal Effects and Urban Climatology
,”
Energy Build.
,
36
(
8
), pp.
781
793
.
28.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2011
, “
Combining a Detailed Building Energy Model With a Physically-Based Urban Canopy Model
,”
Boundary-Layer Meteorol.
,
140
(
3
), pp.
471
489
.
29.
Bueno
,
B.
,
Pigeon
,
G.
,
Norford
,
L. K.
,
Zibouche
,
K.
, and
Marchadier
,
C.
,
2012
, “
Development and Evaluation of a Building Energy Model Integrated in the TEB Scheme
,”
Geosci. Model Dev.
,
5
(
2
), pp.
433
448
.
30.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
.
31.
Gros
,
A.
,
Bozonnet
,
E.
, and
Inard
,
C.
,
2014
, “
Cool Materials Impact at District Scale—Coupling Building Energy and Microclimate Models
,”
Sustain. Cities Soc.
,
13
, pp.
254
266
.
32.
Reinhart
,
C. F.
,
Dogan
,
T.
,
Jakubiec
,
J. A.
,
Rakha
,
T.
, and
Sang
,
A.
,
2013
, “
UMI—An Urban Simulation Environment for Building Energy Use, Daylighting and Walkability
,”
Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association
,
Chambery, France
, pp.
476
483
.
33.
Rodriguez-Alvarez
,
J.
,
2016
, “
Urban Energy Index for Buildings (UEIB): A New Method to Evaluate the Effect of Urban Form on Buildings’ Energy Demand
,”
Landsc. Urban Plan.
,
148
, pp.
170
187
.
34.
Gracik
,
S.
,
Heidarinejad
,
M.
,
Liu
,
J.
, and
Srebric
,
J.
,
2015
, “
Effect of Urban Neighborhoods on the Performance of Building Cooling Systems
,”
Build. Environ.
,
90
, pp.
15
29
.
35.
Fonseca
,
J. A.
, and
Schlueter
,
A.
,
2015
, “
Integrated Model for Characterization of Spatiotemporal Building Energy Consumption Patterns in Neighborhoods and City Districts
,”
Appl. Energy
,
142
, pp.
247
265
.
36.
Robinson
,
D.
,
Campbell
,
N.
,
Gaiser
,
W.
,
Kabel
,
K.
,
Le-Mouel
,
A.
,
Morel
,
N.
,
Page
,
J.
,
Stankovic
,
S.
, and
Stone
,
A.
,
2007
, “
SUNtool—A New Modelling Paradigm for Simulating and Optimising Urban Sustainability
,”
Sol. Energy
,
81
(
9
), pp.
1196
1211
.
37.
Lobaccaro
,
G.
,
Fiorito
,
F.
,
Masera
,
G.
, and
Poli
,
T.
,
2012
, “
District Geometry Simulation: A Study for the Optimization of Solar Facades in Urban Canopy Layers
,”
Energy Proc.
,
30
, pp.
1163
1172
.
38.
Šúri
,
M.
, and
Hofierka
,
J.
,
2004
, “
A New GIS-Based Solar Radiation Model and Its Application to Photovoltaic Assessments
,”
Trans. GIS
,
8
(
2
), pp.
175
190
.
39.
Scherba
,
A.
,
Sailor
,
D. J.
,
Rosenstiel
,
T. N.
, and
Wamser
,
C. C.
,
2011
, “
Modeling Impacts of Roof Reflectivity, Integrated Photovoltaic Panels and Green Roof Systems on Sensible Heat Flux Into the Urban Environment
,”
Build. Environ.
,
46
(
12
), pp.
2542
2551
.
40.
Taha
,
H.
,
2013
, “
The Potential for Air-Temperature Impact From Large-Scale Deployment of Solar Photovoltaic Arrays in Urban Areas
,”
Sol. Energy
,
91
, pp.
358
367
.
41.
Cortes
,
A.
,
Murashita
,
Y.
,
Matsuo
,
T.
,
Kondo
,
A.
,
Shimadera
,
H.
, and
Inoue
,
Y.
,
2015
, “
Numerical Evaluation of the Effect of Photovoltaic Cell Installation on Urban Thermal Environment
,”
Sustain. Cities Soc.
,
19
, pp.
250
258
.
42.
Masson
,
V.
,
Bonhomme
,
M.
,
Salagnac
,
J.-L.
,
Briottet
,
X.
, and
Lemonsu
,
A.
,
2014
, “
Solar Panels Reduce Both Global Warming and Urban Heat Island
,”
Front. Environ. Sci.
,
2
, pp.
1
10
.
43.
Tian
,
W.
,
Wang
,
Y.
,
Xie
,
Y.
,
Wu
,
D.
,
Zhu
,
L.
, and
Ren
,
J.
,
2007
, “
Effect of Building Integrated Photovoltaics on Microclimate of Urban Canopy Layer
,”
Build. Environ.
,
42
(
5
), pp.
1891
1901
.
44.
Lobaccaro
,
G.
,
Fiorito
,
F.
,
Masera
,
G.
, and
Prasad
,
D.
,
2012
, “
Urban Solar District: A Case Study of Geometric Optimization of Solar Façades for a Residential Building in Milan
,”
AuSES Solar 2012 Conference
,
Melbourne, Australia
,
Dec. 5–7
.
45.
Robinson
,
D.
, and
Stone
,
A.
,
2005
, “
A Simplified Radiosity Algorithm for General Urban Radiation Exchange
,”
Build. Serv. Eng. Res. Technol.
,
26
(
4
), pp.
271
284
.
46.
Hong
,
S.-Y.
,
Noh
,
Y.
, and
Dudhia
,
J.
,
2006
, “
A New Vertical Diffusion Package With an Explicit Treatment of Entrainment Processes
,”
Mon. Weather Rev.
,
134
(
9
), pp.
2318
2341
.
47.
Robinson
,
D.
, and
Stone
,
A.
,
2004
, “
Solar Radiation Modelling in the Urban Context
,”
Sol. Energy
,
77
(
3
), pp.
295
309
.
48.
Perez
,
R.
,
Seals
,
R.
, and
Michalsky
,
J.
,
1993
, “
All-Weather Model for Sky Luminance Distribution-Preliminary Configuration and Validation
,”
Sol. Energy
,
50
(
3
), pp.
235
245
.
49.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
50.
Energyplus
,
2017
, “
Engineering Reference
,” US Department of Energy, Washington DC. http://energyplus.net.
51.
Bueno
,
B.
,
Hidalgo
,
J.
,
Pigeon
,
G.
,
Norford
,
L.
, and
Masson
,
V.
,
2013
, “
Calculation of Air Temperatures Above the Urban Canopy Layer From Measurements at a Rural Operational Weather Station
,”
J. Appl. Meteorol. Climatol.
,
52
(
2
), pp.
472
483
.
52.
Park
,
B.
,
Srubar
,
W. V.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
.
53.
Herb
,
W. R.
,
Janke
,
B.
,
Mohseni
,
O.
, and
Stefan
,
H. G.
,
2008
, “
Ground Surface Temperature Simulation for Different Land Covers
,”
J. Hydrol.
,
356
(
3–4
), pp.
327
343
.
54.
Bentz
,
D. P.
,
2000
,
A Computer Model to Predict the Surface Temperature and Time-of-Wetness of Concrete Pavements and Bridge Decks
,
National Institute of Standards and Technology
,
Boston, MA
, pp.
1
19
.
55.
Bentham
,
T.
, and
Britter
,
R.
,
2003
, “
Spatially Averaged Flow Within Obstacle Arrays
,”
Atmos. Environ.
,
37
(
15
), pp.
2037
2043
.
56.
Bueno
,
B.
,
Roth
,
M.
,
Norford
,
L.
, and
Li
,
R.
,
2014
, “
Computationally Efficient Prediction of Canopy Level Urban Air Temperature at the Neighbourhood Scale
,”
Urban Clim.
,
9
, pp.
35
53
.
57.
“Homerenergy.” https://www.homerenergy.com/.
58.
“PV Performance Modeling Collaborative.” https://pvpmc.sandia.gov/applications/.
59.
King
,
D. L.
,
Kratochvil
,
J.
, and
Boyson
,
W. E.
,
2004
, “
Photovoltaic Array Performance Model
,” Report by Sandia National Laboratories, Albuquerque, NM, https://www.osti.gov/servlets/purl/919131
60.
Riley
,
D. M.
,
Hansen
,
C. W.
, and
Farr
,
M.
,
2015
, “
A Performance Model for Photovoltaic Modules With Integrated Microinverters
,”
Report by Sandia National Laboratories
, Albuquerque, NM.
61.
Gupta
,
R. K.
,
2019
,
Numerical Methods: Fundamentals and Applications
,
Cambridge University Press
,
Cambridge, UK
.
62.
Hong
,
S.-Y.
, and
Pan
,
H.-L.
,
1996
, “
Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model
,”
Mon. Weather Rev.
,
124
(
10
), pp.
2322
2339
.
63.
Foken
,
T.
,
2006
, “
50 Years of the Monin-Obukhov Similarity Theory
,”
Boundary-Layer Meteorol.
,
119
(
3
), pp.
431
447
.
64.
Monin
,
A. S.
, and
Obukhov
,
A. M.
,
1954
, “
Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground
,”
Tr. Akad. Nauk SSSR Geofiz. Inst.
,
24
(
151
), pp.
163
187
.
65.
Jiménez
,
P. A.
,
Dudhia
,
J.
,
González-Rouco
,
J. F.
,
Navarro
,
J.
,
Montávez
,
J. P.
, and
García-Bustamante
,
E.
,
2012
, “
A Revised Scheme for the WRF Surface Layer Formulation
,”
Mon. Weather Rev.
,
140
(
3
), pp.
898
918
.
66.
Unzeta
,
B. B.
,
2012
, “
Study and Prediction of the Energy Interactions Between Buildings and the Urban Climate
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA, p.
130
.
67.
Hanna
,
S. R.
, and
Britter
,
R. E.
,
2002
,
Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites
, Wiley, Hoboken, NJ.
68.
Zhang
,
X.
,
Lovati
,
M.
,
Vigna
,
I.
,
Widén
,
J.
,
Han
,
M.
,
Gal
,
C.
, and
Feng
,
T.
,
2018
, “
A Review of Urban Energy Systems at Building Cluster Level Incorporating Renewable-Energy-Source (RES) Envelope Solutions
,”
Appl. Energy
,
230
, pp.
1034
1056
.
69.
Hedquist
,
B. C.
, and
Brazel
,
A. J.
,
2014
, “
Seasonal Variability of Temperatures and Outdoor Human Comfort in Phoenix, Arizona, U.S.A
,”
Build. Environ.
,
72
, pp.
377
388
.
You do not currently have access to this content.