Abstract

Photovoltaic (PV) panels installed on building rooftops yield a positive influence on the thermal performance of the building due to the shading of the PV panels, decreasing cooling loads while causing a smaller increase in heating loads. Additionally, the electrical power output of PV panels has been shown to be increased by including reflectors between PV rows, concentrating the solar flux onto the active portion of the panels. When implemented into the spaces between the rows of a roof-mounted PV array, reflectors might further improve the positive thermal effects of rooftop installed PV arrays. This work focuses on predicting rooftop heat flux and temperature for a building rooftop equipped with PV panels and reflectors. The saved energy load, additional energy load, PV power output, rooftop heat flux, and the utility factor (ratio of positive building energy impacts to negative building energy impacts) are reported parametrically for variations in the rooftop absorptivity and reflector area for three US locations. Utility factors of 375, 140, and 160 are found for Phoenix, AZ, Boise, ID, and Dayton, OH, respectively, for a reflector covering the full area between panels with a roof having a minimal absorptivity. A building in Phoenix, AZ exhibits a 15% increase in the utility factor of the PV-building system when reflectors are incorporated compared to a PV-building system without reflectors, while a building in Dayton, OH showed a 22% increase in utility factor when reflectors are included between the rows of a roof-mounted PV array.

References

1.
Hong
,
T.
,
Lee
,
M.
,
Koo
,
C.
,
Jeong
,
K.
, and
Kim
,
J.
,
2017
, “
Development of a Method for Estimating the Rooftop Solar Photovoltaic (PV) Potential by Analyzing the Available Rooftop Area Using Hillshade Analysis
,”
Appl. Energy
,
194
, pp.
320
332
.
2.
Cao
,
X.
,
Dai
,
X.
, and
Liu
,
J.
,
2016
, “
Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings During the Past Decade
,”
Energy Build.
,
128
, pp.
198
213
.
3.
Maghrabie
,
H. M.
,
Elsaid
,
K.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Olabi
,
A. G.
,
2021
, “
Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101151
.
4.
Singh
,
D.
, and
Chaudhary
,
R.
,
2021
, “
Impact of Roof Attached Photovoltaic Modules on Building Material Performance
,”
Mater. Today: Proc.
,
46
, pp.
445
450
.
5.
Maqbool
,
M. U.
,
Butt
,
A. D.
,
Bhatti
,
A. R.
,
Sheikh
,
Y. A.
, and
Asif
,
M. W.
,
2021
, “
Impact of Rooftop PV Shading on Net Electrical Energy Demand of Buildings in Pakistan
,”
Sci. Proc. Ser.
,
3
(
1
), pp.
45
49
.
6.
Alrashidi
,
H.
,
Ghosh
,
A.
,
Issa
,
W.
,
Sellami
,
N.
,
Mallick
,
T. K.
, and
Sundaram
,
S.
,
2020
, “
Thermal Performance of Semitransparent CdTe BIPV Window at Temperate Climate
,”
Sol. Energy
,
195
, pp.
536
543
.
7.
Alrashidi
,
H.
,
Issa
,
W.
,
Sellami
,
N.
,
Sundaram
,
S.
, and
Mallick
,
T.
,
2022
, “
Thermal Performance Evaluation and Energy Saving Potential of Semi-Transparent CdTe in Façade BIPV
,”
Sol. Energy
,
232
, pp.
84
91
.
8.
Yu
,
G.
,
Yang
,
H.
,
Luo
,
D.
,
Cheng
,
X.
, and
Ansah
,
M. K.
,
2021
, “
A Review on Developments and Researches of Building Integrated Photovoltaic (BIPV) Windows and Shading Blinds
,”
Renewable Sustainable Energy Rev.
,
149
, p.
111288
.
9.
Krarti
,
M.
,
2021
, “
Performance of PV Integrated Dynamic Overhangs Applied to US Homes
,”
Energy
,
230
, p.
120843
.
10.
Cavadini
,
G. B.
, and
Cook
,
L. M.
,
2021
, “
Green and Cool Roof Choices Integrated Into Rooftop Solar Energy Modelling
,”
Appl. Energy
,
296
(
May
), p.
117082
.
11.
Sheikh
,
Y. A.
,
Maqbool
,
M. U.
,
Butt
,
A. D.
,
Bhatti
,
A. R.
,
Awan
,
A. B.
,
Paracha
,
K. N.
, and
Khan
,
M. M.
,
2021
, “
Impact of Rooftop Photovoltaic on Energy Demand of a Building in a Hot Semi-Arid Climate
,”
J. Renew. Sustain. Energy
,
13
(
6
), p.
117082
.
12.
Elghamry
,
R.
,
Hassan
,
H.
, and
Hawwash
,
A. A.
,
2020
, “
A Parametric Study on the Impact of Integrating Solar Cell Panel at Building Envelope on Its Power, Energy Consumption, Comfort Conditions, and CO2 Emissions
,”
J. Clean. Prod.
,
249
, p.
119374
.
13.
Park
,
J. H.
,
Yun
,
B. Y.
,
Chang
,
S. J.
,
Wi
,
S.
,
Jeon
,
J.
, and
Kim
,
S.
,
2020
, “
Impact of a Passive Retrofit Shading System on Educational Building to Improve Thermal Comfort and Energy Consumption
,”
Energy Build.
,
216
, p.
109930
.
14.
D’Agostino
,
D.
,
Parker
,
D.
,
Melià
,
P.
, and
Dotelli
,
G.
,
2022
, “
Optimizing Photovoltaic Electric Generation and Roof Insulation in Existing Residential Buildings
,”
Energy Build.
,
255
, p.
111652
.
15.
Abuseif
,
M.
, and
Gou
,
Z.
,
2018
, “
A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness
,”
Energies (Basel)
,
11
(
11
), p.
3196
.
16.
Kapsalis
,
V. C.
,
Vardoulakis
,
E.
, and
Karamanis
,
D.
,
2014
, “
Simulation of the Cooling Effect of the Roof-Added Photovoltaic Panels
,”
Adv. Build. Energy Res.
,
8
(
1
), pp.
41
54
.
17.
Gassar
,
A. A. A.
, and
Cha
,
S. H.
,
2022
, “
Feasibility Assessment of Adopting Distributed Solar Photovoltaics and Phase Change Materials in Multifamily Residential Buildings
,”
Sustain. Prod. Consum.
,
29
, pp.
507
528
.
18.
Monna
,
S.
,
Abdallah
,
R.
,
Juaidi
,
A.
,
Albatayneh
,
A.
,
Zapata-Sierra
,
A. J.
, and
Manzano-Agugliaro
,
F.
,
2022
, “
Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation
,”
Energies (Basel)
,
15
(
2
), p.
496
.
19.
Mehadi
,
A. A.
,
Chowdhury
,
M. A.
,
Nishat
,
M. M.
,
Faisal
,
F.
, and
Islam
,
M. M.
,
2021
, “
A Software-Based Approach in Designing a Rooftop Bifacial PV System for the North Hall of Residence, IUT
,”
Clean Energy
,
5
(
3
), pp.
403
422
.
20.
Odeh
,
S.
,
2018
, “
Thermal Performance of Dwellings With Rooftop PV Panels and PV/Thermal Collectors
,”
Energies (Basel)
,
11
(
7
), p.
1879
.
21.
Dehwah
,
A. H. A.
, and
Asif
,
M.
,
2019
, “
Assessment of Net Energy Contribution to Buildings by Rooftop Photovoltaic Systems in Hot-Humid Climates
,”
Renewable Energy
,
131
, pp.
1288
1299
.
22.
Ogbeba
,
J. E.
, and
Hoskara
,
E.
,
2019
, “
The Evaluation of Single-Family Detached Housing Units in Terms of Integrated Photovoltaic Shading Devices: The Case of Northern Cyprus
,”
Sustainability (Switzerland)
,
11
(
3
), p.
593
.
23.
Alghamdi
,
A. S.
,
2021
, “
Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio
,”
Energies (Basel)
,
14
(
6
), p.
1537
.
24.
Kaji Esfahani
,
S.
,
Tenorio
,
R.
,
Karrech
,
A.
,
Defendi
,
K.
, and
Jerez
,
F.
,
2021
, “
Analysing the Role of Roof Mounted BIPV System Optimization on Decreasing the Effect of Duck Curve in Perth, Western Australia: An Experimental Case Study
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101328
.
25.
Jahanfar
,
A.
,
Sleep
,
B.
, and
Drake
,
J.
,
2018
, “
Energy and Carbon-Emission Analysis of Integrated Green-Roof Photovoltaic Systems: Probabilistic Approach
,”
J. Infrastruct. Syst.
,
24
(
1
), p.
04017044
.
26.
Rahmani
,
F.
,
Robinson
,
M. A.
, and
Barzegaran
,
M. R.
,
2021
, “
Cool Roof Coating Impact on Roof-Mounted Photovoltaic Solar Modules at Texas Green Power Microgrid
,”
Int. J. Electr. Power Energy Syst.
,
130
, p.
106932
.
27.
Ibrahim
,
M.
,
Shehata
,
A.
,
Elharidi
,
A.
, and
Hanafy
,
A.
,
2021
, “
Effect of PV Shadow on Cooling Load and Energy Consumption of Zone Toward Achieving NZEB
,”
IOP Conf. Ser. Earth Environ. Sci.
,
801
(
1
), p.
012027
.
28.
Peng
,
C.
, and
Yang
,
J.
,
2016
, “
The Effect of Photovoltaic Panels on the Rooftop Temperature in the EnergyPlus Simulation Environment
,”
Int. J. Photoenergy
,
2016
, pp.
1
12
.
29.
Alasadi
,
H.
,
Choi
,
J. K.
, and
Mulford
,
R. B.
,
2022
, “
Influence of Photovoltaic Shading on Rooftop Heat Transfer, Building Energy Loads, and Photovoltaic Power Output
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061011
.
30.
Liu
,
S.
,
Yan
,
Y.
,
Zhang
,
Z.
, and
Bai
,
J.
,
2019
, “
Effect of Distributed Photovoltaic Power Station on Cooling Load Induced by Roof for Sunny Day in Summer
,”
Ther. Sci. Eng. Prog.
,
10
, pp.
36
41
.
31.
Zubair
,
M.
,
Awan
,
A. B.
, and
Praveen
,
R. P.
,
2018
, “
Analysis of Photovoltaic Arrays Efficiency for Reduction of Building Cooling Load in Hot Climates
,”
Build. Serv. Eng. Res. Technol.
,
39
(
6
), pp.
733
748
.
32.
Peres
,
A. C.
,
Calili
,
R.
, and
Louzada
,
D.
,
2020
, “
Impacts of Photovoltaic Shading Devices on Energy Generation and Cooling Demand
,”
Conference Record of the IEEE Photovoltaic Specialists Conference
,
Virtual
,
June
, pp.
1186
1191
.
33.
Gentle
,
A. R.
,
Aguilar
,
J. L. C.
, and
Smith
,
G. B.
,
2011
, “
Optimized Cool Roofs: Integrating Albedo and Thermal Emittance With R-Value
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3207
3215
.
34.
Jarnagin
,
R. F.
,
McBride
,
M. F.
, and
Colliver
,
D. G.
,
2006
, “
Advanced Energy Design Guide for Small Retail Buildings
,”
ASHRAE J.
,
48
(
9
), p.
117
.
35.
Saidi
,
M.
, and
Abardeh
,
R. H.
,
2010
, “
Air Pressure Dependence of Natural-Convection Heat Transfer
,”
WCE 2010—World Congress on Engineering 2010
,
London, UK
,
June 30–July 2
, Vol. 2, pp.
1444
1447
.
36.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
New York, NY
.
37.
Davis
,
M. W.
,
Fanney
,
A. H.
, and
Dougherty
,
B. P.
,
2003
, “
Measured Versus Predicted Performance of Building Integrated Photovoltaics
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
21
27
.
38.
Wang
,
D.
,
Qi
,
T.
,
Liu
,
Y.
,
Wang
,
Y.
,
Fan
,
J.
,
Wang
,
Y.
, and
Du
,
H.
,
2020
, “
A Method for Evaluating Both Shading and Power Generation Effects of Rooftop Solar PV Panels for Different Climate Zones of China
,”
Sol. Energy
,
205
(
13
), pp.
432
445
.
39.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
, 2nd ed.,
Wiley
,
New York, NY
.
40.
Alasadi
,
H.
,
Choi
,
J. K.
, and
Mulford
,
R. B.
,
2022
, “
Influence of Photovoltaic Shading on Rooftop Heat Transfer, Building Energy Loads, and Photovoltaic Power Output
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
060801
.
41.
Alasadi
,
H.
,
Mulford
,
R.
, and
Gilbert
,
R.
,
2020
, “
Reflector-Augmented Photovoltaic Power Output Incorporating Temperature-Dependent Photovoltaic Efficiency
,”
ASME International Mechanical Engineering Congress and Exposition Proceedings (IMECE)
, Vol.
8
, pp.
1
6
.
42.
Astrain
,
D.
,
Merino
,
A.
,
Catalán
,
L.
,
Aranguren
,
P.
,
Araiz
,
M.
,
Sánchez
,
D.
,
Cabello
,
R.
, and
Llopis
,
R.
,
2019
, “
Improvements in the Cooling Capacity and the COP of a Transcritical CO2 Refrigeration Plant Operating With a Thermoelectric Subcooling System
,”
Appl. Therm. Eng.
,
155
, pp.
110
122
.
43.
U.S. Department of Energy
, “Incorporate Minimum Efficiency Requirements for Heating and Cooling Products Into Federal Acquisition Documents,” https://www.energy.gov/eere/femp/incorporate-minimum-efficiency-requirements-heating-and-cooling-products-federal, Accessed May 28, 2021.
You do not currently have access to this content.