Abstract

This note deals with the rectangular tensile sheet with the single edge defect (crack, half-circular-hole crack and half-square-hole crack) by using the hybrid displacement discontinuity method (a boundary element method) proposed recently by Yan. Detailed solutions of the SIFs of the three plane elastic crack problems are given, which can reveal clearly the effect of geometric parameters of the cracked bodies on the SIFs. By comparing the calculated SIFs of the single edge half-circular-hole crack and the single edge half-square-hole crack with those of the single edge crack, in addition, a shielding effect of the half-circular-hole and the half-square-hole on the SIFs of the single edge crack is discussed. It is illustrated that the boundary element method is simple yet accurate for calculating the SIFs of complex crack problems in finite plate.

References

1.
Bowie
,
O. L.
, “
Analysis of an Infinite Plate Containing Radial Cracks Originating at the Boundary of an Internal Circular Hole
,”
J. Math. Phys.
 0022-2488, Vol.
35
,
1956
, pp.
60
71
.
2.
Newman
,
J. C.
, Jr.
, “
An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries
,”
NASA TN
, Vol.
D-6376
,
1971
, pp.
1
45
.
3.
Murakami
,
Y.
, “
A Method of Stress Intensity Factor Calculation for the Crack Emanating from an Arbitrarily Shaped Hole or the Crack in the Vicinity of an Arbitrarily Shape Hole
,”
Trans. Jpn. Soc. Mech. Eng.
 0375-9466, Vol.
44
, No.
378
,
1978
, pp.
423
432
.
4.
Tweed
,
J.
and
Rooke
,
D. P.
, “
The Distribution of Stress Near the Tip of a Radial Crack at the Edge of a Circular Hole
,”
Int. J. Eng. Sci.
 0020-7225, Vol.
11
,
1973
, pp.
1185
1195
. https://doi.org/10.1016/0020-7225(73)90084-0
5.
Isida
,
M.
and
Nakamura
,
Y.
, “
Edge Cracks Originating from an Elliptical Hole in a Wide Plate Subjected to Tension and In-Plane Shear
,”
Trans. Jpn. Soc. Mech. Eng.
 0375-9466, Vol.
46
,
1980
, pp.
947
956
.
6.
Yan
,
X.
, “
An Efficient and Accurate Numerical Method of Stress Intensity Factor Calculation of a Branched Crack
,”
ASME J. Appl. Mech.
 0021-8936, Vol.
72
,
2005
, pp.
330
340
.
7.
Murakami
,
Y.
,
Stress Intensity Factors Handbook
,
Pergamon Press
,
New York
,
1987
, pp.
9
10
.
8.
Crouch
,
S. L.
and
Starfield
,
A. M.
,
Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics
,
London, Geore Allon & Unwin, Bonton
,
Sydney
,
1983
, pp.
1
220
.
9.
Scavia
,
C.
, “
A Numerical Technique for the Analysis of Cracks Subjected to Normal Compressive Stresses
,”
Int. J. Numer. Methods Eng.
 0029-5981, Vol.
33
,
1992
, pp.
929
942
. https://doi.org/10.1002/nme.1620330504
10.
Yan
,
X.
, “
Stress Intensity Factors for Asymmetric Branched Cracks in Plane Extension by Using Crack Tip Displacement Discontinuity Elements
,”
Mech. Res. Commun.
 0093-6413, Vol.
32
, No.
4
,
2005
, pp.
375
384
. https://doi.org/10.1016/j.mechrescom.2004.10.005
11.
Yan
,
X.
, “
A Numerical Analysis of Stress Intensity Factors at Bifurcated Cracks
,”
Eng. Failure Anal.
 1350-6307, Vol.
13
, No.
4
,
2006
, pp.
629
637
. https://doi.org/10.1016/j.engfailanal.2004.12.043
12.
Pan
,
E.
, “
A General Boundary Element Analysis of 2-D Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
 0376-9429, Vol.
88
,
1997
, pp.
41
59
. https://doi.org/10.1023/A:1007462319811
13.
Yan
,
X.
, “
A Numerical Analysis of Cracks Emanating from an Elliptical Hole in a 2-D Elasticity Plate
,”
Eur. J. Mech. A/Solids
 0997-7538, Vol.
25
, No.
1
,
2006
, pp.
142
153
. https://doi.org/10.1016/j.euromechsol.2005.06.005
14.
Yan
,
X.
, “
A Numerical Analysis of Cracks Emanating from a Square Hole in a Rectangular Plate Under Biaxial Loads
,”
Eng. Fract. Mech.
 0013-7944, Vol.
71
, No.
11
,
2004
, pp.
1615
1623
. https://doi.org/10.1016/j.engfracmech.2003.08.005
15.
Yan
,
X.
, “
Cracks Emanating from Circular Hole or Square Hole in Rectangular Plate in Tension
,”
Eng. Fract. Mech.
 0013-7944, Vol.
73
,
2006
, pp.
1743
1754
. https://doi.org/10.1016/j.engfracmech.2006.02.003
16.
Yan
,
X.
, “
An Effective Numerical Approach for Multiple Void-Crack Interaction
,”
ASME J. Appl. Mech.
 0021-8936, Vol.
73
, No.
4
,
2006
, pp.
525
535
.
17.
Yan
,
X.
, “
A Finite Main Crack Interaction with an Arbitrarily Oriented Microdefect
,”
Eng. Failure Anal.
 1350-6307, Vol.
13
, No.
6
,
2006
, pp.
971
980
. https://doi.org/10.1016/j.engfailanal.2005.04.004
18.
Yan
,
X.
, “
Microdefect Interacting with a Finite Main Crack
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
40
, No.
5
,
2005
, pp.
421
430
. https://doi.org/10.1243/030932405X16089
19.
Yan
,
X.
, “
An Effective Boundary Element Method for Analysis of Crack Problems in a Plane Elastic Plate
,”
Appl. Math. Mech.
 0253-4827, Vol.
26
, No.
6
,
2005
, pp.
814
822
. https://doi.org/10.1007/BF02440090
20.
Yan
,
X.
, “
A Brief Evaluation of Approximation Methods for Microcrack Shielding Problems
,”
ASME J. Appl. Mech.
 0021-8936, Vol.
73
, No.
4
,
2006
, pp.
694
696
.
21.
Yan
,
X.
, “
Analysis of the Interference Effect of Arbitrary Multiple Parabolic Cracks in Plane Elasticity by Using a New Boundary Element Method
,”
Comput. Methods Appl. Mech. Eng.
 0045-7825, Vol.
192
, Nos.
47–48
,
2003
, pp.
5099
5121
. https://doi.org/10.1016/j.cma.2003.07.002
22.
Yan
,
X.
, “
Interaction of Arbitrary Multiple Cracks in an Infinite Plate
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
39
, No.
3
,
2004
, pp.
237
244
. https://doi.org/10.1243/030932404323042669
23.
Yan
,
X.
, “
Analysis for a Crack Emanating Form a Corner of a Square Hole in an Infinite Plate Using the Hybrid Displacement Discontinuity Method
,”
Appl. Math. Model.
 0307-904X, Vol.
28
, No.
9
,
2004
, pp.
835
847
. https://doi.org/10.1016/j.apm.2003.12.005
24.
Yan
,
X.
, “
An Effective Method of Stress Intensity Factor Calculation for Cracks Emanating Form a Triangular or Square Hole Under Biaxial Loads
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
26
, No.
12
,
2003
, pp.
1127
1133
. https://doi.org/10.1046/j.1460-2695.2003.00706.x
25.
Yan
,
X.
, “
Numerical Analysis of Stress Intensity Factor for Two Kinds of Mixed-Mode Crack Specimens
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
41
, No.
1
,
2006
, pp.
9
18
. https://doi.org/10.1243/030932405X16133
26.
Yan
,
X.
, “
A New Boundary Element Modeling of Fatigue Propagation Process of Center-Inclined Crack Plate Under Uniaxial Cyclic Loading
,”
Mech. Res. Commun.
 0093-6413, Vol.
33
, No.
4
,
2006
, pp.
470
481
. https://doi.org/10.1016/j.mechrescom.2005.06.006
27.
Yan
,
X.
, “
Multiple Crack Fatigue Growth Modeling by Displacement Discontinuity Method with Crack-Tip Elements
,”
Appl. Math. Model.
 0307-904X, Vol.
30
, No.
6
,
2006
, pp.
489
508
. https://doi.org/10.1016/j.apm.2005.05.010
28.
Aliabadi
,
M. H.
, “
Boundary Element Formulation in Fracture Mechanics
,”
Appl. Mech. Rev.
 0003-6900, Vol.
50
,
1997
, pp.
83
96
. https://doi.org/10.1115/1.3101690
29.
Cruse
,
T. A.
, “
Numerical Evaluation of Elastic Stress Intensity Factors by Boundary Integral Equation Method
,”
Surface Cracks Physics Problems and Computational Solutions
,
Swedlow
J. L.
, Ed.,
ASME
,
New York
,
1972
, pp.
153
170
.
30.
Cruse
,
T. A.
, “
Two-Dimensional BIE Fracture Mechanics Analysis
,”
Appl. Math. Model.
 0307-904X, Vol.
2
,
1978
, pp.
287
293
. https://doi.org/10.1016/0307-904X(78)90023-9
31.
Blandford
,
G. E.
,
Ingraffea
,
A. R.
, and
Liggett
,
J. A.
, “
Two-Dimensional Stress Intensity Factor Computations Using the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
 0029-5981, Vol.
17
,
1981
, pp.
387
404
. https://doi.org/10.1002/nme.1620170308
32.
Portela
,
A.
,
Aliabadi
,
M. H.
, and
Rook
,
D. P.
, “
The Dual Boundary Element Method: Effective Implementation for Crack Problems
,”
Int. J. Numer. Methods Eng.
 0029-5981, Vol.
33
,
1992
, pp.
1269
1287
. https://doi.org/10.1002/nme.1620330611
33.
Mi
,
Y.
and
Aliabadi
,
M. H.
, “
Dual-Boundary Element Method for Three Dimensional Fracture Mechanics Analysis
,”
Eng. Anal. Boundary Elem.
 0955-7997, Vol.
10
,
1992
, pp.
161
171
. https://doi.org/10.1016/0955-7997(92)90047-B
34.
Chang
,
C.
and
Mear
,
M. E.
, “
A Boundary Element Method for Two Dimensional Linear Elastic Fracture Analysis
,”
Int. J. Fract.
 0376-9429,
74
,
1995
, pp.
219
251
.
35.
Tanaka
,
M.
and
Itoh
,
H.
, “
New Crack Elements for Boundary Element Analysis of Elastostatics Considering Arbitrary Stress Singularities
,”
Appl. Math. Model.
 0307-904X, Vol.
11
,
1987
, pp.
357
363
. https://doi.org/10.1016/0307-904X(87)90030-8
36.
Cruse
,
T. A.
,
1989
,
Boundary Element Analysis in Computational Fracture Mechanics
,
Kluwer
,
Dordrecht
, pp.
1
230
.
37.
Aliabadi
,
M. H.
and
Rooke
,
D. P.
,
Numerical Fracture Mechanics
,
Computational Mechanics Publications
,
Southampton
and
Kluwer
,
Dordrecht
,
1991
, pp.
1
90
.
38.
Mack
,
M. G.
,
The Displacement Discontinuity Method, Boundary Element Techniques in Geomechanics
,
Manolis
G. D.
and
Davies
T. G.
, Eds.,
1994
, pp.
63
100
.
This content is only available via PDF.
You do not currently have access to this content.