Phase change materials (PCMs) are widely applied in recent decades due to their good thermal performance in energy systems. Their applications are mainly limited by the phase change temperature and latent heat. Many publications are reported around the characteristic improvement of binary organic PCMs. The thermal stability study on organic binary PCMs used in thermal energy storage applications becomes fundamental and meaningful. In this study, thermal stability of three types of organic binary PCMs was experimentally investigated, which are frequently used in building and industry applications. To qualitatively investigate the stability of composite PCMs, differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR) spectra testing of samples were also conducted. Experimental results showed that the selected composite PCMs, capric acid (CA), and myristic acid (MA), had the best thermal performances, with its phase change temperature unchanged and heat of fusion decreased only 8.88 J/g, or 4.55%, after 2000 thermal cycles. Furthermore, quality ratio of required PCMs as the variation of operation duration was analyzed to quantitatively prepare the materials. The PCMs can successfully operate about 3125 times when prepared as 1.20 times of its calculated value by starting fusion heat. Conclusions of this research work can also be used for guiding the selection and preparation of other energy storage materials.

References

1.
Schossig
,
P.
,
Henning
,
H.
,
Gschwander
,
S.
, and
Haussmann
,
T.
,
2005
, “
Micro-Encapsulated Phase-Change Materials Integrated Into Construction Materials
,”
Sol. Energy Mater. Sol. Cells
,
89
(
2–3
), pp.
297
306
.
2.
Kuznik
,
F.
, and
Virgone
,
J.
,
2009
, “
Experimental Assessment of a Phase Change Material for Wall Building Use
,”
Appl. Energy
,
86
(
10
), pp.
2038
2046
.
3.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X. S.
,
2014
, “
On the Placement of a Phase Change Material Thermal Shield Within the Cavity of Buildings Walls for Heat Transfer Rate Reduction
,”
Energy
,
73
, pp.
780
786
.
4.
Cabeza
,
L. F.
,
Castellón
,
C.
,
Nogués
,
M.
,
Medrano
,
M.
,
Leppers
,
R.
, and
Zubillaga
,
O.
,
2007
, “
Use of Microencapsulated PCM in Concrete Walls for Energy Savings
,”
Energy Build.
,
39
(
2
), pp.
113
119
.
5.
Jiang
,
G. W.
,
Huang
,
J. H.
,
Liu
,
M. C.
, and
Cao
,
M.
,
2017
, “
Experiment and Simulation of Thermal Management for a Tube-Shell Li-Ion Battery Pack With Composite Phase Change Material
,”
Appl. Therm. Eng.
,
120
, pp.
1
9
.
6.
Shi
,
S.
,
Xie
,
X. Q.
,
Li
,
M.
,
Yuan
,
Y. P.
,
Yu
,
J. Z.
,
Wu
,
H. W.
,
Liu
,
B.
, and
Liu
,
N.
,
2017
, “
Non-Steady Experimental Investigation on an Integrated Thermal Management System for Power Battery With Phase Change Materials
,”
Energy Convers. Manage.
,
138
, pp.
84
96
.
7.
Song
,
M.
,
Xu
,
X.
,
Mao
,
N.
,
Deng
,
S.
, and
Xu
,
Y.
,
2017
, “
Energy Transfer Procession in an Air Source Heat Pump Unit During Defrosting
,”
Appl. Energy
,
204
, pp.
679
689
.
8.
Song
,
M. J.
,
Dong
,
J. K.
,
Wu
,
C. L.
,
Jiang
,
Y. Q.
, and
Qu
,
M. L.
,
2017
, “
Improving the Frosting and Defrosting Performance of Air Source Heat Pump Units: Review and Outlook
,”
HKIE Trans.
,
24
(
2
), pp.
88
98
.
9.
Zhang
,
L.
,
Dang
,
C. B.
, and
Hihara
,
E. J.
,
2010
, “
Performance Analysis of a No-Frost Hybrid Air Conditioning System With Integrated Liquid Desiccant Dehumidification
,”
Int. J. Refrig.
,
33
(
1
), pp.
116
124
.
10.
Qu
,
M. L.
,
Xia
,
L.
,
Deng
,
S. M.
, and
Jiang
,
Y. Q.
,
2010
, “
Improved Indoor Thermal Comfort During Defrost With a Novel Reverse-Cycle Defrosting Method for Air Source Heat Pumps
,”
Building Environ.
,
45
(
11
), pp.
2354
2361
.
11.
Hu
,
W. J.
,
Jiang
,
Y. Q.
,
Qu
,
M. L.
,
Ni
,
L.
,
Yao
,
Y.
, and
Deng
,
S. M.
,
2011
, “
An Experimental Study on the Operating Performance of a Novel Reverse-Cycle Hot Gas Defrosting Method for Air Source Heat Pumps
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
363
369
.
12.
Liu
,
S. C.
,
Li
,
H. L.
,
Song
,
M. J.
,
Dai
,
B. M.
, and
Sun
,
Z. L.
,
2017
, “
Impacts on the Solidification of Water on Plate Surface for Cold Energy Storage Using Ice Slurry
,”
Appl. Energy
, accepted.
13.
Song
,
M. J.
,
Niu
,
F. X.
,
Mao
,
N.
,
Hu
,
Y. X.
, and
Deng
,
S. M.
,
2018
, “
Review on Building Energy Performance Improvement Using Phase Change Materials
,”
Energy Build.
,
158
, pp.
776
793
.
14.
Kuznik
,
F.
,
Virgone
,
J.
, and
Johannes
,
K.
,
2011
, “
In-Situ Study of Thermal Comfort Enhancement in a Renovated Building Equipped With Phase Change Material Wallboard
,”
Renewable Energy
,
36
(
5
), pp.
1458
1462
.
15.
Roman
,
K. K.
,
O'Brien
,
T.
,
Alvey
,
J. B.
, and
Woo
,
O.
,
2016
, “
Simulating the Effects of Cool Roof and PCM (Phase Change Materials) Based Roof to Mitigate UHI (Urban Heat Island) in Prominent US Cities
,”
Energy
,
96
, pp.
103
117
.
16.
Belmonte
,
J. F.
,
Eguía
,
P.
,
Molina
,
A. E.
, and
Almendros-Ibáñez
,
J. A.
,
2015
, “
Thermal Simulation and System Optimization of a Chilled Ceiling Coupled With a Floor Containing a Phase Change Material (PCM)
,”
Sustainable Cities Soc.
,
14
, pp.
154
170
.
17.
Behzadi
,
S.
, and
Farid
,
M. M.
,
2010
, “
Energy Storage for Efficient Energy Utilization in Buildings
,”
International High Performance Buildings Conference
, West Lafayette, IL, July 12–15, p.
6
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1005&context=ihpbc
18.
,
A. V.
,
Azenha
,
M.
,
de Sousa
,
H.
, and
Samagaio
,
A.
,
2012
, “
Thermal Enhancement of Plastering Mortars With Phase Change Materials: Experimental and Numerical Approach
,”
Energy Build.
,
49
, pp.
16
27
.
19.
Saffari
,
M.
,
de Gracia
,
A.
,
Fernández
,
C.
, and
Cabeza
,
L. F.
,
2017
, “
Simulation-Based Optimization of PCM Melting Temperature to Improve the Energy Performance in Buildings
,”
Appl. Energy
,
202
, pp.
420
434
.
20.
Ansuini
,
R.
,
Larghetti
,
R.
,
Giretti
,
A.
, and
Lemma
,
M.
,
2011
, “
Radiant Floors Integrated With PCM for Indoor Temperature Control
,”
Energy Build.
,
43
(
11
), pp.
3019
3026
.
21.
Tokuç
,
A.
,
Başaran
,
T.
, and
Yesügey
,
S. C.
,
2015
, “
An Experimental and Numerical Investigation on the Use of Phase Change Materials in Building Elements: The Case of a Flat Roof in Istanbul
,”
Energy Build.
,
102
, pp.
91
104
.
22.
Alqallaf
,
H. J.
, and
Alawadhi
,
E. M.
,
2013
, “
Concrete Roof With Cylindrical Holes Containing PCM to Reduce the Heat Gain
,”
Energy Build.
,
61
, pp.
73
80
.
23.
Zhao
,
M.
,
Zhu
,
T. T.
,
Wang
,
C. N.
,
Chen
,
H.
, and
Zhang
,
Y. W.
,
2016
, “
Numerical Simulation on the Thermal Performance of Hydraulic Floor Heating System With Phase Change Materials
,”
Appl. Therm. Eng.
,
93
, pp.
900
907
.
24.
Saman
,
W.
,
Bruno
,
F.
, and
Halawa
,
E.
,
2005
, “
Thermal Performance of PCM Thermal Storage Unit for a Roof Integrated Solar Heating System
,”
Sol. Energy
,
78
(
2
), pp.
341
349
.
25.
Zhou
,
G. B.
, and
He
,
J.
,
2015
, “
Thermal Performance of a Radiant Floor Heating System With Different Heat Storage Materials and Heating Pipes
,”
Appl. Energy
,
138
, pp.
648
660
.
26.
Huang
,
K. L.
,
Feng
,
G. H.
, and
Zhang
,
J. S.
,
2014
, “
Experimental and Numerical Study on Phase Change Material Floor in Solar Water Heating System With a New Design
,”
Sol. Energy
,
105
, pp.
126
138
.
27.
Voelker
,
C.
,
Kornadt
,
O.
, and
Ostry
,
M.
,
2008
, “
Temperature Reduction Due to the Application of Phase Change Materials
,”
Energy Build.
,
40
(
5
), pp.
937
944
.
28.
Kośny
,
J.
,
Biswas
,
K.
,
Miller
,
W.
, and
Kriner
,
S.
,
2012
, “
Field Thermal Performance of Naturally Ventilated Solar Roof With PCM Heat Sink
,”
Sol. Energy
,
86
(
9
), pp.
2504
2514
.
29.
Yahay
,
N. A.
, and
Ahmad
,
H.
,
2011
, “
Numerical Investigation of Indoor Air Temperature With the Application of PCM Gypsum Board as Ceiling Panels in Buildings
,”
Procedia Eng.
,
20
, pp.
238
248
.
30.
Xia
,
Y.
, and
Zhang
,
X. S.
,
2016
, “
Experimental Research on a Double-Layer Radiant Floor System With Phase Change Material Under Heating Mode
,”
Appl. Therm. Eng.
,
96
, pp.
600
606
.
31.
Alawadhi
,
E. M.
, and
Alqallaf
,
H. J.
,
2011
, “
Building Roof With Conical Holes Containing PCM to Reduce the Cooling Load: Numerical Study
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2958
2964
.
32.
Gin
,
B.
,
Farid
,
M. M.
, and
Bansal
,
P. K.
,
2010
, “
Effect of Door Opening and Defrost Cycle on a Freezer With Phase Change Panels
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2698
2706
.
33.
Fang
,
G. Y.
,
Wu
,
S. M.
, and
Liu
,
X.
,
2010
, “
Experimental Study on Cool Storage Air-Conditioning System With Spherical Capsules Packed Bed
,”
Energy Build.
,
42
(
7
), pp.
1056
1062
.
34.
Qu
,
D. H.
,
Ni
,
L.
,
Yao
,
Y.
, and
Hu
,
W. J.
,
2015
, “
Reliability Verification of a Solar–Air Source Heat Pump System With PCM Energy Storage in Operating Strategy Transition
,”
Renewable Energy
,
84
, pp.
46
55
.
35.
Zhu
,
N.
,
Hu
,
P. F.
,
Lei
,
Y.
,
Jiang
,
Z. N.
, and
Lei
,
F.
,
2015
, “
Numerical Study on Ground Source Heat Pump Integrated With Phase Change Material Cooling Storage System in Office Building
,”
Appl. Therm. Eng.
,
87
, pp.
615
623
.
36.
Cheng
,
X. W.
,
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2016
, “
Thermal Performance Analysis of a Packed Bed Cold Storage Unit Using Composite PCM Capsules for High Temperature Solar Cooling Application
,”
Appl. Therm. Eng.
,
100
, pp.
247
255
.
37.
Barzin
,
R.
,
Chen
,
J. J. J.
,
Young
,
B. R.
, and
Farid
,
M. M.
,
2015
, “
Application of PCM Energy Storage in Combination With Night Ventilation for Space Cooling
,”
Appl. Energy
,
158
, pp.
412
421
.
38.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2004
, “
Free-Cooling of Buildings With Phase Change Materials
,”
Int. J. Refrig.
,
27
(
8
), pp.
839
849
.
39.
Darzi
,
A. A. R.
,
Moosania
,
S. M.
,
Tan
,
F. L.
, and
Farhadi
,
M.
,
2013
, “
Numerical Investigation of Free-Cooling System Using Plate Type PCM Storage
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
155
163
.
40.
Borderon
,
J.
,
Virgone
,
J.
, and
Cantin
,
R.
,
2015
, “
Modeling and Simulation of a Phase Change Material System for Improving Summer Comfort in Domestic Residence
,”
Appl. Energy
,
140
, pp.
288
296
.
41.
Jaworski
,
M.
,
2014
, “
Thermal Performance of Building Element Containing Phase Change Material (PCM) Integrated With Ventilation System – an Experimental Study
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
665
674
.
42.
Mosaffa
,
A. H.
,
Garousi Farshi
,
L.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Evaluation of a Multiple-PCM Thermal Storage Unit for Free Cooling Applications
,”
Renewable Energy
,
68
, pp.
452
458
.
43.
Belmonte
,
J. F.
,
Izquierdo-Barrientos
,
M. A.
,
Eguía
,
P.
,
Molina
,
A. E.
, and
Almendros-Ibáñez
,
J. A.
,
2014
, “
PCM in the Heat Rejection Loops of Absorption Chillers. A Feasibility Study for the Residential Sector in Spain
,”
Energy Build.
,
80
, pp.
331
351
.
44.
Agyenim
,
F.
, and
Hewitt
,
N.
,
2010
, “
The Development of a Finned Phase Change Material (PCM) Storage System to Take Advantage of Off-Peak Electricity Tariff for Improvement in Cost of Heat Pump Operation
,”
Energy Build.
,
42
(
9
), pp.
1552
1560
.
45.
Qi
,
Q.
,
Jiang
,
Y. Q.
, and
Deng
,
S. M.
,
2008
, “
A Simulation Study on Solar Energy Seasonal Storage by Phase Change Material
,”
IEEE International Conference Sustainable Energy Technologies
(
ICSET
), Singapore, Nov. 24–27.
46.
Zhang
,
J. J.
,
Zhang
,
J. L.
,
He
,
S. M.
,
Wu
,
K. Z.
, and
Liu
,
X. D.
,
2001
, “
Thermal Studies on the Solid-Liquid Phase Transition in Binary Systems of Fatty Acids
,”
Thermochim Acta
,
369
(
1–2
), pp.
157
160
.
47.
Hasan
,
A.
, and
Sayigh
,
A. A. M.
,
1994
, “
Some Fatty Acids as Phase Change Thermal Energy Storage Materials
,”
Renewable Energy
,
4
(
1
), pp.
69
76
.
48.
Joshi
,
C. K.
,
1998
, “
Thermal Storage in Ammonium Alum/Ammonium Nitrate Eutectic for Solar Space Heating Applications
,”
ASME Sol. Energy Eng.
,
120
(
1
), pp.
20
24
.
49.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Tyagi
,
V. V.
, and
Mahlia
,
T. M. I.
,
2016
, “
Accelerated Thermal Cycle and Chemical Stability Testing of Polyethylene Glycol (PEG) 6000 for Solar Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
235
239
.
50.
Han
,
L. P.
,
Ma
,
G. X.
,
Xie
,
S. L.
,
Sun
,
J. H.
,
Jia
,
Y. Z.
, and
Jing
,
Z.
,
2017
, “
Thermal Properties and Stabilities of the Eutectic Mixture: 1,6-Hexanediol/Lauric Acid as a Phase Change Material for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
116
, pp.
153
159
.
51.
Ma
,
G. X.
,
Han
,
L. P.
,
Sun
,
J. H.
, and
Jia
,
Y. Z.
,
2017
, “
Thermal Properties and Reliability of Eutectic Mixture of Stearic Acid-Acetamide as Phase Change Material for Latent Heat Storage
,”
J. Chem. Thermodyn.
,
106
, pp.
178
186
.
52.
Raam Dheep
,
G.
, and
Sreekumar
,
A.
,
2015
, “
Influence of Accelerated Thermal Charging and Discharging Cycles on Thermo-Physical Properties of Organic Phase Change Materials for Solar Thermal Energy Storage Applications
,”
Energy Convers. Manage.
,
105
, pp.
13
19
.
53.
Alkan
,
C.
,
Kaya
,
K.
, and
Sarı
,
A.
,
2009
, “
Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage
,”
J. Polym. Environ.
,
17
(
4
), p.
254
.
54.
Ali
,
K.
, and
Ahmet
,
S.
,
2010
, “
Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form-Stable Composites for Energy Storage
,”
J. Ind. Eng. Chem.
,
16
(
5
), pp.
767
773
.
55.
Zhang
,
L.
, and
Dong
,
J. K.
,
2017
, “
Experimental Study on the Thermal Stability of a Paraffin Mixture With Up to 10,000 Thermal Cycles
,”
Therm. Sci. Eng. Prog.
,
1
, pp.
78
87
.
56.
Schmidt
,
M.
,
2007
,
Phase Change Materials-Latent Heat Storage for Interior Climate Control
,
BASF
,
Ludwigshafen, Germany
.
57.
Mao
,
N.
,
Pan
,
D. M.
,
Song
,
M. J.
,
Li
,
Z.
,
Xu
,
Y. J.
, and
Deng
,
S. M.
,
2017
, “
Operating Optimization for Improved Energy Consumption of a TAC System Affected by Nighttime Thermal Loads of Building Envelopes
,”
Energy
,
133
, pp.
491
501
.
58.
Lei
,
J.
,
Kumarasamy
,
K.
,
Zingre
,
K. T.
,
Yang
,
J.
,
Wan
,
M. P.
, and
Yang
,
E. H.
,
2017
, “
Cool Colored Coating and Phase Change Materials as Complementary Cooling Strategies for Building Cooling Load Reduction in Tropics
,”
Appl. Energy
,
190
, pp.
57
63
.
59.
Mao
,
N.
,
Song
,
M. J.
,
Pan
,
D. M.
,
Li
,
Z.
, and
Deng
,
S. M.
,
2017
, “
Numerical Investigations on the Effects of Envelope Thermal Loads on Energy Utilization Potential and Thermal Non-Uniformity in Sleeping Environments
,”
Building Environ.
,
124
, pp.
232
244
.
You do not currently have access to this content.