Abstract

Polydimethylsiloxane (PDMS)-based casting method was used to fabricate PDMS cell culture platforms with molds printed by a fused deposition modeling (FDM) printer. Cell viability study indicated that the produced plates have the suitable biocompatibility, surface properties, and transparency for cell culture purposes. The molds printed from acrylonitrile-butadiene-syrene (ABS) were reusable after curing at 65 °C, but were damaged at 75 °C. To understand thermal damage to the mold at elevated temperatures, the temperature distribution in an ABS mold during the curing process was predicted using a model that considers conduction, convection, and radiation in the oven. The simulated temperature distribution was consistent with the observed mold deformation. As the maximum temperature difference in the mold did not change appreciably with the curing temperature, we consider that the thermal damage is due to the porous structure that increases the thermal expansion coefficient of the printed material. Our study demonstrated that FDM, an affordable and accessible three-dimensional (3D) printer, has great potential for rapid prototyping of custom-designed cell culture devices for biomedical research.

References

1.
Domansky
,
K.
,
Inman
,
W.
,
Serdy
,
J.
,
Dash
,
A.
,
Lim
,
M. H. M.
, and
Griffith
,
L. G.
,
2010
, “
Perfused Multiwell Plate for 3D Liver Tissue Engineering
,”
Lab Chip
,
10
(
1
), pp.
51
58
.
2.
Hedrich
,
W. D.
,
Xiao
,
J.
,
Heyward
,
S.
,
Zhang
,
Y.
,
Zhang
,
J.
,
Baer
,
M. R.
,
Hassan
,
H. E.
, and
Wang
,
H.
,
2016
, “
Activation of the Constitutive Androstane Receptor Increases the Therapeutic Index of CHOP in Lymphoma Treatment
,”
Mol. Cancer Ther.
,
15
(
3
), pp.
392
401
.
3.
Halldorsson
,
S.
,
Lucumi
,
E.
,
Gómez-Sjöberg
,
R.
, and
Fleming
,
R. M. T.
,
2015
, “
Advantages and Challenges of Microfluidic Cell Culture in Polydimethylsiloxane Devices
,”
Biosens. Bioelectron.
,
63
, pp.
218
231
.
4.
Rodrigues
,
R. O.
,
Lima
,
R.
, and
Gomes
,
H. T.
, and
Silva
,
A. M. T.
,
2015
, “
Polymer Microfluidic Devices: An Overview of Fabrication Methods
,”
U. Porto J. Eng.
,
1
(1), pp.
67
79
.
5.
Friend
,
J.
, and
Yeo
,
L.
,
2010
, “
Fabrication of Microfluidic Devices Using Polydimethylsiloxane
,”
Biomicrofluidics
,
4
(
2
), p.
026502
.
6.
Wu
,
J.
, and
Gu
,
M.
,
2011
, “
Microfluidic Sensing: State of the Art Fabrication and Detection Techniques
,”
J. Biomed. Opt.
,
16
(
8
), p.
080901
.
7.
Amin
,
R.
,
Knowlton
,
S.
,
Hart
,
A.
,
Yenilmez
,
B.
,
Ghaderinezhad
,
F.
,
Katebifar
,
S.
,
Messina
,
M.
,
Khademhosseini
,
A.
, and
Tasoglu
,
S.
,
2016
, “
3D-Printed Microfluidic Devices
,”
Biofabrication
,
8
(
2
), p.
022001
.
8.
Ho
,
B.
,
Ng
,
S. H.
,
Li
,
H.
, and
Yoon
,
Y.
,
2015
, “
3D Printed Microfluidics for Biological Applications
,”
Lab Chip.
,
15
(
18
), pp.
3627
3637
.
9.
Anderson
,
K. B.
,
Lockwood
,
S. Y.
,
Martin
,
R. S.
, and
Spence
,
D. M.
,
2013
, “
A 3D Printed Fluidic Device That Enables Integrated Features
,”
Anal. Chem.
,
85
(
12
), pp.
5622
5626
.
10.
Chen
,
C.
,
Wang
,
Y.
,
Lockwood
,
S. Y.
, and
Spence
,
D. M.
,
2014
, “
3D-Printed Fluidic Devices Enable Quantitative Evaluation of Blood Components in Modified Storage Solutions for Use in Transfusion Medicine
,”
Analyst
,
139
(
13
), pp.
3219
3226
.
11.
Dragone
,
V.
,
Sans
,
V.
,
Rosnes
,
M. H.
,
Kitson
,
P. J.
, and
Cronin
,
L.
,
2013
, “
3D-Printed Devices for Continuous-Flow Organic Chemistry
,”
Beilstein J. Org. Chem.
,
9
, pp.
951
959
.
12.
Byun
,
I.
,
Ueno
,
R.
, and
Kim
,
B.
,
2014
, “
Micro-Heaters Embedded in PDMS Fabricated Using Dry Peel-Off Process
,”
Microelectron. Eng.
,
121
, pp.
1
4
.
13.
Warkiani
,
M. E.
,
Khoo
,
B. L.
,
Wu
,
L.
,
Tay
,
A. K. P.
,
Bhagat
,
A. A. S.
,
Han
,
J.
, and
Lim
,
C. T.
,
2016
, “
Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells From Blood Using Spiral Microfluidics
,”
Nat. Protocols
,
11
(
1
), pp.
134
148
.
14.
Kitson
,
P. J.
,
Rosnes
,
M. H.
,
Sans
,
V.
,
Dragone
,
V.
, and
Cronin
,
L.
,
2012
, “
Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices
,”
Lab Chip
,
12
(
18
), pp.
3267
3271
.
15.
Bonyár
,
A.
,
Sántha
,
H.
,
Varga
,
M.
,
Ring
,
B.
,
Vitéz
,
A.
, and
Harsányi
,
G.
,
2014
, “
Characterization of Rapid PDMS Casting Technique Utilizing Molding Forms Fabricated by 3D Rapid Prototyping Technology (RPT)
,”
Int. J. Mater.
,
7
(
2
), pp.
189
196
.
16.
Thomas
,
M. S.
,
Millare
,
B.
,
Clift
,
J. M.
,
Bao
,
D.
,
Hong
,
C.
, and
Vullev
,
V. I.
,
2010
, “
Print-and-Peel Fabrication for Microfluidics: What's in It for Biomedical Applications?
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
21
32
.
17.
Au
,
A. K.
,
Huynh
,
W.
,
Horowitz
,
L. F.
, and
Folch
,
A.
,
2016
, “
3-D Printed Microfluidics
,”
Angew. Chem., Int. Ed.
,
55
(
12
), pp.
3862
3881
.
18.
Johnston
,
D.
,
McCluskey
,
D. K.
,
Tan
,
C. K. L.
, and
Tracey
,
M. C.
,
2014
, “
Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035017
.
19.
Corning, D.,
2013
, “
Sylgard™ 184 Silicone Elastomer
,” Technical Data Sheet, accessed Dec. 10, 2017, https://consumer.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true
20.
Bag
,
S. D.
,
Nandan
,
B.
,
Alam
,
S.
,
Kandpal
,
L. C.
, and
Mathur
,
G. N.
,
2003
, “
Density Measurements of Plastics—A Simple Standard Test Method
,”
Indian J. Chem. Technol.
,
10
, pp.
561
563
.https://www.scribd.com/document/367689097/Density-Measurement-of-Plastics
21.
Abhishek
,
K.
, 2017, “
PDMS Shrinkage
,” University of Pennsylvania, Philadelphia, PA, accessed Dec. 10, 2017, https://repository.upenn.edu/scn_protocols/42/?utm_ source=repository.upenn.edu%2Fscn_protocols%2F42&utm_medium=PDF&utm_ campaign=PDFCoverPages
22.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A.
,
2009
,
Introduction to Heat Transfer
, 5th ed.,
Wiley
,
Hoboken, NJ
.
23.
Ngo
,
I. L.
, and
Byon
,
C.
, 2016, “
Thermal Conductivity of Particle-Filled Polymers
,”
Polymer Science: Research Advances, Practical Applications, and Educational Aspects
, Formatex Research Center, Badajoz, Spain.
24.
Livermore, C., and Voldman, J., 2004, “
Design and Fabrication of Microelectromechanical Devices Material Properties Database
,” Massachusetts Institute of Technology, Cambridge, MA, accessed Dec. 10, 2017, http://web.mit.edu/6.777/www/
25.
Styrolution,
2015
, “
Acrylonitrile Butadiene Styrene (ABS)
,” Technical Data Sheet, Styrolution, accessed Dec. 10, 2017, http://www.activas.com.br/downloads/especialidades/abs/terluran-hh-106.pdf
26.
Engineering Toolbox, 2001, “
Dry Air Properties Dry
,” The Engineering ToolBox, accessed Dec. 10, 2017, https://www.engineeringtoolbox.com/dry-air-properties-d_973.html
27.
Engineering Toolbox, “
Densities of Solids
,” The Engineering ToolBox, accessed Dec. 10, 2017, https://www.engineeringtoolbox.com/density-solids-d_1265.html
28.
Engineering Toolbox, 2001, “
Thermal Conductivity of Common Materials and Gases
,” The Engineering ToolBox, accessed Dec. 10, 2017, https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
29.
Granta Design, 2017, “
Acrylonitrile Butadiene Styrene (ABS)
,” Granta Design, Cambridge, UK, accessed Dec. 10, 2017, http://www.grantadesign.com/education/datasheets/ABS.htm
30.
Engineering Toolbox, 2001, “
Specific Heat of Solids
,” The Engineering ToolBox, accessed Dec. 10, 2017, https://www.engineeringtoolbox.com/specific-heat-solids-d_154.html
31.
Chen
,
K.-C.
,
Wo
,
A. M.
, and
Chen
,
Y.-F.
,
2006
, “
Transmission Spectrum of PDMS in 4-7 μm Mid-IR Range for Characterization of Protein Structure
,”
NSTI-Nanotech.
,
2
, pp.
732
735
.
32.
Iwan
,
S.
,
Ando
,
Y.
, and
Shimamura
,
S.
,
2006
, “
Theoretical Consideration of the Effect of Porosity on Thermal Conductivity of Porous Materials
,”
J. Porous Mater.
,
13
(
3–4
), pp.
439
443
.
33.
Pietrak, K., and
Wi´sniewski
,
T. S.
,
2015
, “
A Review of Models for Effective Thermal Conductivity of Composite Materials
,”
J. Power Technol.
,
95
(
1
), pp.
14
24
.
34.
Kuo
,
A. C. M.
,
1999
,
Polymer Data Handbook
,
Oxford University Press
, New York.
35.
Shui, Z., Zhang, R., Chen, W., and Xuan, D., 2010, “
Effects of Mineral Admixtures on the Thermal Expansion Properties of Hardened Cement Paste
,”
Constr. Build. Mater.
,
24
(9), pp. 1761–1767.
36.
Ghabezloo
,
S.
,
2010
, “
Effect of Porosity on the Thermal Expansion Coefficient: A Discussion of the Paper ‘Effects of Mineral Admixtures on the Thermal Expansion Properties of Hardened Cement Paste’ by Z.H. Shui, R. Zhang, W. Chen, D. Xuan
,”
Constr. Build. Mater.
,
24
(
9
), pp.
1796
1798
.
37.
Kováčik
,
J.
,
1999
, “
Correlation Between Young's Modulus and Porosity in Porous Materials
,”
J. Mater. Sci. Lett.
,
18
(
13
), pp.
1007
1010
.
38.
Ashby, M.,
2010
, “
Material and ProcessSelection Charts
,”
Granta Design
, Cambridge, UK, accessed Dec. 10, 2017, http://www.grantadesign.com/download/pdf/teaching_resource_books/2-Materials-Charts-2010.pdf
You do not currently have access to this content.