Abstract

This paper presents a numerical study to investigate the feasibility of transporting water mist to the rotating blades of a high-pressure turbine. The idea of using mist film cooling to enhance conventional air cooling has been proven to be a feasible technique under laboratory conditions. However, there are challenges in implementing this scheme for real gas turbine systems. The first challenge is how to transport the mist to the rotating blades and the second challenge is delivering the mist to the injection holes and getting the particles to survive within the harsh gas turbine environment. Both a zero-dimensional mist evaporation analytical model and a 3D computational fluid dynamics (CFD) scheme are employed for analysis. In the CFD simulation, the Lagrangian–Eulerian method is used along with the discrete phase model (DPM) to track the evaporation process of each individual water droplet. For transporting the mist to the blades, the high-pressure water mist is injected into the stream of cooling air extracted from the compressor through two different passages. The first passage passes through the rotor cover-plate cavity before entering the blade base. The second passage passes through a diaphragm box on the base of the second vane, then tangentially through a cooling passage in the rotating shaft, and eventually to the blade base. The results show that it is feasible to transport the mist from the turbine casing to the blade through both passages, provided that droplets with sufficient particle diameter and mist loading are used. The shorter passage, through the nozzle diaphragm, alleviates a lot of challenges facing the passage through the blade cavity and seems to be more practical. A side benefit of transporting mist through the internal passages is the additional cooling of the preswirler and rotor cover plates. The results are encouraging for implementing the mist cooling technique under real gas turbine conditions.

References

1.
Goldstein
,
R. J.
,
1971
,
Film Cooling: Advances in Heat Transfer
, Vol.
7
,
Academic Press
,
New York
, pp.
321
379
.
2.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
, pp.
669
679
. 10.1016/S0142-727X(03)00081-X
3.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Detailed Analysis of Film-Cooling Physics-Part 1: Streamwise Injection With Cylindrical Holes
,”
Proceedings of the ASME Turbo Expo 1997
,
Orlando, FL, USA
,
June 2–5
, ASME Paper No. 97-GT-269.
4.
Zhang
,
L. J.
, and
Pudupaty
,
R.
,
2000
, “
The Effects of Injection Angle and Hole Exit Shape on Turbine Nozzle Pressure Side Film Cooling
,”
Proceedings of the ASME Turbo Expo 2000
,
Munich, Germany
,
May 8–11
, ASME Paper No. 2000-GT-247.
5.
Drost
,
U.
, and
Bolcs
,
A.
,
1998
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
Proceedings of the ASME Turbo Expo 1998
,
Stockholm, Sweden
,
June 1–4
, ASME Paper No. 98-GT-20.
6.
Medic
,
G.
, and
Durbin
,
P. A.
,
2002
, “
Toward Improved Film Cooling Prediction
,”
ASME J. Turbomach.
,
124
, pp.
193
199
. 10.1115/1.1458021
7.
Dunn
,
M. G.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine. Part I: Time Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
. 10.1115/1.3262029
8.
Dunn
,
M. G.
,
George
,
W. K.
,
Rae
,
W. J.
,
Woodward
,
S. H.
,
Moller
,
J. C.
, and
Seymour
,
J. P.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine, Part II: Description of Analysis Technique and Typical Time-Resolved Measurements
,”
ASME J. Turbomach.
,
108
(
1
), pp.
98
107
. 10.1115/1.3262030
9.
Takagi
,
T.
, and
Ogasawara
,
M.
,
1974
, “
Some Characteristics of Heat and Mass Transfer in Binary Mist Flow
,”
Proceedings of 5th International Heat Transfer Conference
,
Tokyo
, No.
4
, pp.
350
354
.
10.
Mori
,
Y.
,
Hijikata
,
K.
, and
Yasunaga
,
T.
,
1982
, “
Mist Cooling of Very Hot Tubules With Reference to Through-Hole Cooling of Gas Turbine Blades
,”
Int. J. Heat Mass Transf.
,
25
(
9
), pp.
1271
1278
. 10.1016/0017-9310(82)90121-1
11.
Janssen
,
J. M.
,
Florschuetz
,
L. W.
, and
Fizdon
,
J. P.
,
1986
, “
Heat Transfer to Two-Phase Air/Water Mixtures Flowing in Small Tubes With Inlet Disequilibrium
,”
NASA CR 175076
.
12.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube Part I: Experimental System
,”
ASME J. Turbomach.
,
122
, pp.
360
365
. 10.1115/1.555460
13.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part II: Results and Modeling
,”
ASME J. Turbomach.
,
122
, pp.
366
374
. 10.1115/1.555451
14.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a 180-Degree Tube
,”
ASME J. Heat Transf.
,
122
(
4
), pp.
749
756
. 10.1115/1.1287794
15.
Nazarov
,
A. D.
,
Serov
,
A. F.
,
Terekhov
,
V. I.
, and
Sharov
,
K. A.
,
2009
, “
Experimental Investigation of Evaporative Pulse-Spray Impingement Cooling
,”
J. Eng. Phys. Thermophys.
,
82
(
6
), pp.
1184
1190
. 10.1007/s10891-010-0298-2
16.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2010
, “
Enhancement of an Impingement Heat Transfer Between Turbulent Mist Jet and Flat Surface
,”
Int. J. Heat Mass Transf.
,
53
, pp.
3156
3165
. 10.1016/j.ijheatmasstransfer.2010.03.011
17.
Wang
,
T.
,
Gaddis
,
J. L.
, and
Li
,
X.
,
2005
, “
Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets
,”
Int. J. Heat Mass Transf.
,
48
, pp.
5179
5191
. 10.1016/j.ijheatmasstransfer.2005.07.016
18.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
,
1996
, “
An Experimental Study of Turbine Vane Heat Transfer With Water-Air Cooling
,”
Proceedings of the ASME Turbo Expo 1996
,
Birmingham, UK
,
June 10–13
, ASME Paper No. 96-GT-381.
19.
Li
,
X.
, and
Wang
,
T.
,
2006
, “
Simulation of Film Cooling Enhancement With Mist Injection
,”
ASME J. Heat Transf.
,
128
(
6
), pp.
509
519
. 10.1115/1.2171695
20.
Li
,
X.
, and
Wang
,
T.
,
2007
, “
Effects of Various Modeling on Mist Film Cooling
,”
ASME J. Heat Transf.
,
129
, pp.
472
482
. 10.1115/1.2709959
21.
Wang
,
T.
, and
Li
,
X.
,
2008
, “
Mist Film Cooling Simulation at Gas Turbine Operating Conditions
,”
Int. J. Heat Mass Transf.
,
51
, pp.
5305
5317
. 10.1016/j.ijheatmasstransfer.2008.04.040
22.
Li
,
X.
, and
Wang
,
T.
,
2008
, “
Two-Phase Flow Simulation of Mist Film Cooling on Turbine Blades With Conjugate Internal Cooling
,”
ASME J. Heat Transf.
,
130
, 102901. 10.1115/1.2944247
23.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2012
, “
Simulation of Mist Film Cooling on Rotating Gas Turbine Blades
,”
ASME J. Heat Transf.
,
134
, 011501/1-11. 10.1115/1.4004480
24.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
,
2005
, “
The Thermal Efficiency of Near-Wall Gas-Droplets Screens. Part I. Numerical Modeling
,”
Int. J. Heat Mass Transf.
,
48
, pp.
1747
1759
. 10.1016/j.ijheatmasstransfer.2004.11.010
25.
Ragab
,
R.
, and
Wang
,
T.
,
2012
, “
An Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes
,”
Proceedings of Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, ASME Paper GT2012-70110.
26.
Kurzke
,
J.
,
2007
, “
Gas Turbine Details 5
,” http://www.gasturb.de/cooled-turbine.html
27.
Dennis
,
R.
,
2006
,
The Gas Turbine Handbook
,
U.S. Department of Energy
.
28.
Snowsill
,
G. D.
, and
Young
,
C.
,
2006
, “
The Application of CFD to Underpin the Design of Gas Turbine Pre-Swirl Systems
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, ASME IGTI, ASME Paper GT2006-90443.
29.
Oldfield
,
M.
,
2007
, “
Keep It Cool! 38 Years of Gas-Turbine Research
,” www.soue.org.uk/souenews/issue7/osney.html
30.
Ragab
,
R.
, and
Wang
,
T.
,
2013
, “
Investigation of Applicability of Using Water Mist for Cooling High-Pressure Turbine Components via Rotor Cavity Feed Channels
,”
Proceedings of HT2013 ASME Summer Heat Transfer Conference
,
Minneapolis, MN
,
June 14–19
, ASME Paper No. HT2013-17150.
31.
Kuo
,
K. Y.
,
1986
,
Principles of Combustion
,
John Wiley and Sons
,
New York
.
32.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2010
, “
Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling in Gas Turbine Blades
,”
ASME J. Heat Transf.
,
132
(
12
), 122201/1-11. 10.1115/1.4002394
33.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2008
, “
Validation of Mist/steam Cooling CFD Model in a Horizontal Tube
,”
Proceedings of the ASME 2008 Summer National Heat Transfer Conference
,
Jacksonville, FL
,
Aug. 10–14
, ASME Paper No. HT08-56280.
34.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2012
, “
Numerical Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes
,”
Int. J. Heat Mass Transf.
,
55
, pp.
3818
3828
. 10.1016/j.ijheatmasstransfer.2012.02.042
35.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2013
, “
Computational Analysis of Mist/Air Cooling in a Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators
,”
Int. J. Heat Mass Transf.
,
61
, pp.
554
564
. 10.1016/j.ijheatmasstransfer.2013.02.006
36.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, England
.
37.
ANSYS Manual, Version 12.0, 2009, Ansys Inc.
38.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
,
1952
, “
Evaporation From Drops Part I
,”
Chem. Eng. Prog.
,
48
, pp.
141
146
.
39.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
,
1952
, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
,
48
, pp.
173
180
.
40.
Eldrid
,
S. Q.
,
Burns
,
J. L.
,
Palmer
,
G. D.
,
Leone
,
S. A.
,
Drlik
,
G. J.
, and
Gibler
,
E. E.
2002
, “
Cooling Supply System for Stage 3 Bucket of a Gas Turbine
,” U.S. Patent No. 6,397,604B2,
June
4
.
41.
Wang
,
S.
,
Liu
,
G.
,
Mao
,
J.
, and
Feng
,
Z.
,
2007
, “
Experimental Investigation on the Solid Particle Erosion in the Control Stage Nozzles of Steam Turbine
,”
Proceedings of ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, ASME Paper No. GT2007-27700.
You do not currently have access to this content.