Abstract

A numerical study is performed on simultaneous heat and mass transfer from a shrouded vertical nonisothermal variable height fin array, representing dehumidification process under natural convection. Fluid properties are treated as uniform, and the fluid is assigned to comply with Boussinesq approximation to include the effect of density variation with temperature and concentration. Semi-implicit method for the pressure linked equations revised (SIMPLER) algorithm is adopted to resolve pressure and velocity coupling. A detailed parametric investigation of fin spacing, variable fin height, and fin tip to shroud clearance for a range of thermal and mass Grashof number is undertaken. Results indicate that in case of smaller fin spacing, involving fin length of 0.3 m, coefficients of sensible and latent heat transfer increase with the decreasing variable height (H1*) of fin and become maximum at H1*=0.5, for all thermal and mass Grashof numbers considered presently. Further, total heat transfer analysis on a particular base length due to sensible heat shows a maximum of 24.4% enhancement, whereas same due to the latent heat shows a maximum of 25.8% enhancement, depending on the values of clearance. Induced velocities also increase with the decreasing variable height of fin (H1*), which influences the heat and mass transport. The output parameters of this analysis, like induced velocities and overall Nusselt numbers due to the sensible and latent heat, are correlated with the governing parameters. The correlation coefficients are found to be in a range from 0.97 to 0.99.

References

1.
McQuiston
,
F. C.
,
1975
, “
Fin Efficiency With Combined Heat and Mass Transfer
,”
ASHRAE Trans.
,
81
(
1
), pp.
350
355
.
2.
Elmahdy
,
A. H.
, and
Biggs
,
R. C.
,
1983
, “
Efficiency of Extended Surfaces With Simultaneous Heat and Mass Transfer
,”
ASHRAE Trans.
,
89
(
Part 1A
), pp.
135
143
.
3.
Wu
,
G.
, and
Bong
,
T. Y.
,
1994
, “
Overall Efficiency of a Straight Fin With Combined Heat and Mass Transfer
,”
ASHRAE Trans.
,
100
(
1
), pp.
367
374
.
4.
Threlkeld
,
J. L.
,
1970
,
Thermal Environmental Engineering
, 2nd ed.,
Prentice Hall Inc.
,
Englewood Cliffs, NJ
.
5.
Liang
,
S. Y.
,
Wong
,
T. N.
, and
Nathan
,
J. K.
,
2000
, “
Comparison of One Dimensional and Two Dimensional Models for Wet Surface Fin Efficiency of a Plate-Fin-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
20
(
10
), pp.
941
962
. 10.1016/S1359-4311(99)00078-2
6.
Lin
,
C.
, and
Jang
,
J.
,
2002
, “
A Two-Dimensional Fin Efficiency Analysis of Combined Heat and Mass Transfer in Elliptic Fins
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3839
3847
. 10.1016/S0017-9310(02)00086-8
7.
Naphon
,
P.
,
2006
, “
Study on the Heat Transfer Characteristics of the Annular Fin Under Dry-Surface, Partially Wet-Surface and Fully Wet-Surface Conditions
,”
Int. Commun. Heat Mass Transfer
,
33
(
1
), pp.
112
121
. 10.1016/j.icheatmasstransfer.2005.08.009
8.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2008
, “
Efficiency and Optimization of Straight Fins With Combined Heat and Mass Transfer—An Analytical Solution
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2279
2288
. 10.1016/j.applthermaleng.2008.01.003
9.
Hazarika
,
S. A.
,
Bhanja
,
D.
,
Nath
,
S.
, and
Kundu
,
B.
,
2018
, “
Thermal Design Parameter of a Wet T-Shaped Fin for Linear Variation of Humidity Ratio With Saturation Temperature
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2391
2397
. 10.1007/s12206-018-0451-y
10.
Kundu
,
B.
,
2009
, “
Approximate Analytic Solution for Performance of Wet Fins With a Polynomial Relationship Between Humidity Ratio and Temperature
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2108
2118
. 10.1016/j.ijthermalsci.2009.03.005
11.
Kundu
,
B.
,
2010
, “
A New Methodology for Determination of an Optimum Fin Shape Under Dehumidifying Conditions
,”
Int. J. Refrig.
,
33
(
6
), pp.
1105
1117
. 10.1016/j.ijrefrig.2010.04.001
12.
Xu
,
X.
,
Xia
,
L.
,
Chan
,
M.
, and
Deng
,
S.
,
2008
, “
A Modified McQuiston Model for Evaluating Efficiency of Wet Fin Considering Effect of Condensate Film Moving on Fin Surface
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2403
2408
. 10.1016/j.enconman.2008.01.015
13.
Hazarika
,
S. A.
,
Bhanja
,
D.
,
Nath
,
S.
, and
Kundu
,
B.
,
2015
, “
Analytical Solution to Predict Performance and Optimum Design Parameters of Constructal T-Shaped Fin With Simultaneous Heat and Mass Transfer
,”
Energy
,
84
(
Dec.
), pp.
303
316
. 10.1016/j.energy.2015.02.102
14.
Hazarika
,
S. A.
,
Bhanja
,
D.
,
Nath
,
S.
, and
Kundu
,
B.
,
2016
, “
Geometric Optimization and Performance Study of a Constructal T-Shaped Fin Under Simultaneous Heat and Mass Transfer
,”
Appl. Therm. Eng.
,
109
(
Part A
), pp.
162
174
. 10.1016/j.applthermaleng.2016.08.007
15.
Ali
,
H. M.
, and
Briggs
,
A.
,
2015
, “
A Semi-Empirical Model for Free-Convection Condensation on Horizontal Pin Fin Tubes
,”
Int. J. Heat Mass Transfer
,
81
(
Feb.
), pp.
157
166
. 10.1016/j.ijheatmasstransfer.2014.10.008
16.
Ali
,
H. M.
,
2017
, “
An Analytical Model for Prediction of Condensate Flooding on Horizontal Pin-Fin Tubes
,”
Int. J. Heat Mass Transfer
,
106
(
Mar.
), pp.
1120
1124
. 10.1016/j.ijheatmasstransfer.2016.10.088
17.
Lin
,
Y. T.
,
Hsu
,
K. C.
,
Chang
,
Y. J.
, and
Wang
,
C. C.
,
2001
, “
Performance of Rectangular Fin in Wet Conditions: Visualization and Wet Fin Efficiency
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
827
836
. 10.1115/1.1391275
18.
Hirbodi
,
K.
, and
Yaghoubi
,
M.
,
2015
, “
Experimental Investigation of Natural Dehumidification Over an Annular Finned Tube
,”
Exp. Therm. Fluid Sci.
,
57
(
Sept.
), pp.
128
144
. 10.1016/j.expthermflusci.2014.04.005
19.
Patankar
,
S. V.
, and
Sparrow
,
E. M.
,
1979
, “
Condensation on an Extended Surface
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
434
440
. 10.1115/1.3451001
20.
Wilkins
,
J. E.
, Jr.
,
1980
, “
A Discussion on Condensation on an Extended Surface
,”
ASME J. Heat Transfer
,
102
, pp.
186
187
.
21.
Sarma
,
P. K.
,
Chary
,
S. P.
, and
Rao
,
V. D.
,
1988
, “
Condensation on a Vertical Plate Fin of Variable Thickness
,”
Int. J. Heat Mass Transfer
,
31
(
9
), pp.
1941
1944
. 10.1016/0017-9310(88)90207-4
22.
Kundu
,
B.
, and
Lee
,
K. S.
,
2012
, “
Analytic Solution for Heat Transfer of Wet Fins on Account of All Non-Linearity Effects
,”
Energy
,
41
(
1
), pp.
354
367
. 10.1016/j.energy.2012.03.004
23.
Sparrow
,
E. M.
,
Baliga
,
B. R.
, and
Patankar
,
S. V.
,
1978
, “
Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
572
579
. 10.1115/1.3450859
24.
Sparrow
,
E. M.
, and
Kadle
,
D. S.
,
1986
, “
Effect of Tip to Shroud Clearance on Turbulent Heat Transfer From a Shrouded Longitudinal Fin Array
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
519
524
. 10.1115/1.3246965
25.
Karvinen
,
R.
,
Karema
,
H.
, and
Siiskonen
,
P.
,
1990
, “
Treatment of Moisture Condensation on Fins
,”
Wärme- und Stoffübertragung
,
25
(
1
), pp.
27
31
. 10.1007/BF01592350
26.
Giri
,
A.
,
Narasimham
,
G. S. V. L.
, and
Krishna Murthy
,
M. V.
,
2003
, “
Combined Natural Convection Heat and Mass Transfer From Vertical Fin Arrays
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
100
113
. 10.1016/S0142-727X(02)00209-6
27.
Giri
,
A.
,
Pathak
,
K. K.
, and
Das
,
B.
,
2015
, “
A Computational Study of Mixed Convective Heat and Mass Transfer From a Shrouded Vertical Non-Isothermal Fin Array During Dehumidification Process
,”
Int. J. Heat Mass Transfer
,
91
(
Dec.
), pp.
264
281
. 10.1016/j.ijheatmasstransfer.2015.07.079
28.
Zhuang
,
D.
,
Ding
,
G.
,
Hu
,
H.
,
Fujino
,
H.
, and
Inoue
,
S.
,
2016
, “
Condensing Droplet Behaviors on Fin Surface Under Dehumidifying Condition: Part I: Numerical Model
,”
Appl. Therm. Eng.
,
105
(
July
), pp.
336
344
. 10.1016/j.applthermaleng.2015.02.082
29.
Wang
,
X. W.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2017
, “
Numerical Analysis of Different Fluted Fins for Condensation on a Vertical Tube
,”
Int. J. Therm. Sci.
,
122
(
Dec.
), pp.
359
370
. 10.1016/j.ijthermalsci.2017.09.003
30.
Li
,
M.
,
Zhou
,
W.
,
Wei
,
J.
, and
Tao
,
W.
,
2018
, “
3D Numerical Simulation of Heat and Mass Transfer of Fin-and-Tube Heat Exchanger Under Dehumidifying Conditions
,”
Int. J. Heat Mass Transfer
,
127
(
Part C
), pp.
597
610
. 10.1016/j.ijheatmasstransfer.2018.08.005
31.
Al-Sarkhi
,
A.
,
2005
, “
Comparison Between Variable and Constant Height Shrouded Fin Array Subjected to Forced Convection Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
548
556
. 10.1016/j.icheatmasstransfer.2004.02.017
32.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
(
Oct.
), pp.
1086
1092
. 10.1016/j.ijheatmasstransfer.2017.06.031
33.
Pathak
,
K. K.
,
Giri
,
A.
, and
Lingfa
,
P.
,
2018
, “
A Numerical Study of Natural Convective Heat Transfer From a Shrouded Vertical Variable Height Non-Isothermal Fin Array
,”
Appl. Therm. Eng.
,
130
(
Feb.
), pp.
1310
1318
. 10.1016/j.applthermaleng.2017.11.120
34.
Chang
,
C. J.
,
Lin
,
T. F.
, and
Yan
,
W. M.
,
1986
, “
Natural Convection Flows in a Vertical, Open Tube Resulting From Combined Buoyancy Effects of Thermal and Mass Diffusion
,”
Int. J. Heat Mass Transfer
,
29
(
10
), pp.
1543
1552
. 10.1016/0017-9310(86)90069-4
35.
Tsay
,
H. C.
, and
Yan
,
W. M.
,
1991
, “
Binary Diffusion and Heat Transfer in Laminar Mixed Convection Channel Flows With Uniform Wall Heat Flux: Extremely Thin Film Thickness
,”
Wärme- und Stoffübertragung
,
26
(
1
), pp.
23
31
. 10.1007/BF01589900
36.
Boulama
,
K.
, and
Galanis
,
N.
,
2004
, “
Analytical Solution for Fully Developed Mixed Convection Between Parallel Vertical Plates With Heat and Mass Transfer
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
381
388
. 10.1115/1.1737774
37.
Karki
,
K. C.
, and
Patankar
,
S. V.
,
1987
, “
Cooling of a Vertical Shrouded Fin Array by Natural Convection: A Numerical Study
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
671
676
. 10.1115/1.3248140
38.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
39.
Starner
,
K. E.
, and
McManus
,
H. N.
, Jr.
,
1963
, “
An Experimental Investigation of Free-Convection Heat Transfer From Rectangular-Fin Arrays
,”
ASME J. Heat Transfer
,
85
(
3
), pp.
273
278
. 10.1115/1.3686097
40.
Lebedev
,
P. D.
,
Baklastov
,
A. M.
, and
Sergazin
,
Z. F.
,
1969
, “
Aerodynamics, Heat and Mass Transfer in Vapour Condensation From Humid Air on a Flat Plate in a Longitudinal Flow in Asymmetrically Cooled Slot
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
833
842
. 10.1016/0017-9310(69)90150-1
41.
Churchill
,
S. W.
,
1974
,
The Interpretation and Use of Rate Data: The Rate Concept
,
Scripta
,
Washington, DC
.
42.
Das
,
B.
, and
Giri
,
A.
,
2014
, “
Non-Boussinesq Laminar Mixed Convection in a Non-Isothermal Fin Array
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
447
458
. 10.1016/j.applthermaleng.2013.11.032
You do not currently have access to this content.