Abstract

In this paper, an exact analytical solution for forced convective heat transfer of nonlinear viscoelastic fluid in isothermal circular micro-channel is presented. The nonlinear Giesekus constitutive equation is used to model the Giesekus fluid heat transfer in micro-channel with constant wall temperature, which is the main innovative aspect of the current study. This constitutive equation is a powerful tool and able to model the fractional viscometric functions, extensional viscosity, and elastic property. The solution of temperature profile and Nusselt number is obtained based on the Frobenius method. The effects of Weissenberg number, mobility factor, slip coefficient, and Navier index on temperature distribution, velocity profile, and Nusselt number are investigated in detail. The results show that the increases in both slip coefficient and Navier index cause the increases in slip velocity and maximum dimensionless temperature at the wall and the micro-channel center, respectively. Moreover, the Nusselt number has an upward trend with increases in slip coefficient and Navier index parameters. The results are indicated that the flow and temperature fields have a complex relation with mobility factor which controls the level of the nonlinearity of the Giesekus model. Additionally, three correlations for Nusselt number of Giesekus flow in micro-channel are presented.

References

1.
Kays
,
W. M.
, and
Crwford
,
M. E.
,
1993
,
Convection Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
2.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
3.
Shahmardan
,
M. M.
,
Norouzi
,
M.
,
Kayhani
,
M. H.
, and
Amiri Delouei
,
A.
,
2012
, “
An Exact Analytical Solution for Convective Heat Transfer in Rectangular Ducts
,”
J. Zhejiang Univ., Sci., A
,
13
(
10
), pp.
768
781
. 10.1631/jzus.A1100122
4.
Norouzi
,
M.
, and
Davoodi
,
M.
,
2015
, “
Exact Analytical Solution on Convective Heat Transfer of Isothermal Pipes
,”
J. Thermophys. Heat Transfer
,
29
(
3
), pp.
632
636
. 10.2514/1.T4495
5.
Yoo
,
J. Y.
, and
Choi
,
H. C.
,
1989
, “
On the Steady Simple Shear Flows of the one-Mode Giesekus Fluid
,”
Rheol. Acta
,
28
(
1
), pp.
13
24
. 10.1007/BF01354764
6.
Pinho
,
F. T.
, and
Oliveira
,
P. J.
,
2000
, “
Analysis of Forced Convection in Pipes and Channels With the Simplified Phan-Thien–Tanner Fluid
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2273
2287
. 10.1016/S0017-9310(99)00303-8
7.
Coelho
,
P. M.
,
Pinho
,
F. T.
, and
Oliveira
,
P. J.
,
2002
, “
Fully Developed Forced Convection of the Phan-Thien–Tanner Fluid in Ducts With a Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1413
1423
. 10.1016/S0017-9310(01)00236-8
8.
Mahdavi Khatibi
,
A.
,
Mirzazadeh
,
M.
, and
Rashidi
,
F.
,
2010
, “
Forced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Pipes and Channels
,”
Heat Mass Transfer
,
46
(
4
), pp.
405
412
. 10.1007/s00231-010-0582-x
9.
Norouzi
,
M.
,
2016
, “
Analytical Solution for the Convection of Phan-Thien-Tanner Fluids in Isothermal Pipes
,”
Int. J. Therm. Sci.
,
108
, pp.
165
173
. 10.1016/j.ijthermalsci.2016.05.012
10.
Mokarizadeh
,
H.
,
Asgharian
,
M.
, and
Raisi
,
A.
,
2013
, “
Heat Transfer in Couette-Poiseuille Flow Between Parallel Plates of the Giesekus Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
196
(
Suppl. C
), pp.
95
101
. 10.1016/j.jnnfm.2013.01.007
11.
Schowalter
,
W. R.
,
1988
, “
The Behavior of Complex Fluids at Solid Boundaries
,”
J. Non-Newtonian Fluid Mech.
,
29
, pp.
25
36
. 10.1016/0377-0257(88)85048-1
12.
Byun
,
D.
,
Kim
,
J.
,
Ko
,
H. S.
, and
Park
,
H. C.
,
2008
, “
Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,”
Phys. Fluids
,
20
(
11
), p.
113601
. 10.1063/1.3026609
13.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
. 10.1063/1.1812011
14.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
. 10.1063/1.1669400
15.
Joseph
,
P.
, and
Tabeling
,
P.
,
2005
, “
Direct Measurement of the Apparent Slip Length
,”
Phys. Rev. E
,
71
(
3
), p.
035303
. 10.1103/PhysRevE.71.035303
16.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
. 10.1063/1.1432696
17.
Mohseni
,
M. M.
,
Tissot
,
G.
, and
Badawi
,
M.
,
2018
, “
Forced Convection Heat Transfer of Giesekus Fluid With Wall Slip Above the Critical Shear Stress in Pipes
,”
Int. J. Heat Fluid Flow
,
71
, pp.
442
450
. 10.1016/j.ijheatfluidflow.2018.05.005
18.
Barkhordari
,
M.
, and
Etemad
,
S. G.
,
2007
, “
Numerical Study of Slip Flow Heat Transfer of Non-Newtonian Fluids in Circular Microchannels
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1027
1033
. 10.1016/j.ijheatfluidflow.2007.02.007
19.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2012
, “
Analytical Solutions for Newtonian and Inelastic Non-Newtonian Flows With Wall Slip
,”
J. Non-Newtonian Fluid Mech.
,
175–176
, pp.
76
88
. 10.1016/j.jnnfm.2012.03.004
20.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2012
, “
Analytical Solutions for Channel Flows of Phan-Thien–Tanner and Giesekus Fluids Under Slip
,”
J. Non-Newtonian Fluid Mech.
,
171–172
, pp.
97
105
. 10.1016/j.jnnfm.2012.01.009
21.
Anand
,
V.
,
2014
, “
Slip law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition
,”
Energy
,
76
, pp.
716
732
. 10.1016/j.energy.2014.08.070
22.
Anand
,
V.
,
2016
, “
Effect of Slip on Heat Transfer and Entropy Generation Characteristics of Simplified Phan-Thien–Tanner Fluids with Viscous Dissipation Under Uniform Heat Flux Boundary Conditions: Exponential Formulation
,”
Appl. Therm. Eng.
,
98
, pp.
455
473
. 10.1016/j.applthermaleng.2015.12.025
23.
Norouzi
,
M.
, and
Rezaie
,
M. R.
,
2018
, “
An Exact Analysis on Heat Convection of Nonlinear Viscoelastic Flows in Isothermal Microtubes Under Slip Boundary Condition
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
9
), p.
472
. 10.1007/s40430-018-1389-9
24.
Boyce
,
W. E.
, and
DiPrima
,
R.
,
1992
,
Elementary Differential Equations and Boundary Value Problems
,
Wiley
,
New York
.
You do not currently have access to this content.