Abstract

The performance of a wave rotor refrigerator (WRR) is strongly affected by unsteady heat transfer between gas and tubes. In this work, the mechanism of the heat transfer and its effects on WRR were investigated numerically and experimentally. Results show that the heat absorption of wave rotor occurs in the process of shock wave propagation, and heat release happens in other processes. The unsteady heat transfer causes an uneven wall temperature. The temperature varies along the longitudinal direction, while the time variation can be neglected. Furthermore, the position of the bolts, which link the wave rotor and the shaft, has a great influence on WRR gaps. The closer the position of bolts to the high-pressure (HP) nozzle is, the less effect of gaps would be. The research is an important guiding significance to the improvement of WRR refrigeration performance and WRR design.

References

1.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2005
, “
Preliminary Study of a Novel R718 Compression Refrigeration Cycle Using a Three-Port Condensing Wave Rotor
,”
J. Eng. Gas Turbines Power
,
127
(
3
), pp.
539
544
. 10.1115/1.1850503
2.
Marchal
,
P.
,
Malek
,
S.
, and
Vitard
,
J. C.
,
1984
, “
Skid-Mounted Rotating Thermal Separator
,”
Oil Gas J.
,
82
(
49
), pp.
55
58
.
3.
Okamoto
,
K.
, and
Araki
,
M.
,
2008
, “
Shock Wave Observation in Narrow Tubes for a Parametric Study on Micro Wave Rotor Design
,”
J. Therm. Sci.
,
17
(
2
), pp.
134
140
. 10.1007/s11630-008-0134-6
4.
Hu
,
D. P.
,
Zhao
,
Y. M.
,
Wu
,
T.
,
Li
,
Z. H.
,
Yu
,
Y.
, and
Wang
,
J. X.
,
2020
, “
The Complete Performance Map of Gas Wave Ejector and Analysis on the Variation Laws and Limitation of Performance
,”
ASME J. Eng. Gas Turbines Power.
,
142
(
2
), p.
021012
. 10.1115/1.4045219
5.
Akbari
,
P.
, and
Nalim
,
R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
J. Propul. Power
,
25
(
4
), pp.
833
844
. 10.2514/1.34081
6.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
. 10.1115/1.2204628
7.
Iancu
,
F.
,
Piechna
,
J.
, and
Müller
,
N.
,
2011
, “
Basic Design Scheme for Wave Rotors
,”
Shock Waves
,
18
(
5
), pp.
365
378
. 10.1007/s00193-008-0165-7
8.
Dai
,
Y. Q.
,
Liu
,
P. Q.
,
Wu
,
J. T.
,
Zhu
,
C.
,
Liu
,
P. Q.
,
Zhang
,
L. M.
, and
Hu
,
D. P.
,
2011
, “
Unsteady Behavior of Real Gas in Wave Rotor Refrigerators
,”
Adv. Mater.
,
236–238
(
9
), pp.
1516
1522
.
9.
Ozawa
,
H.
,
2015
, “
Visualization of Unsteady Boundary-Layer Transition on Shock-Tube Wall Using Highly Sensitive Fast-response TSP
,”
20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
,
Glasgow, Scotland
.
10.
Satish
,
N.
, and
Venkatasubbaiah
,
K.
,
2019
, “
Numerical Investigations of Flow and Heat Transfer Characteristics Between Turbulent Double Jet Impingement and a Moving Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051001
. 10.1115/1.4042584
11.
Yang
,
L. B.
,
Han
,
H. Z.
,
Li
,
Y. J.
, and
Li
,
X. M.
,
2016
, “
A Numerical Study of the Flow and Heat Transfer Characteristics of Outward Convex Corrugated Tubes With Twisted-Tape Insert
,”
ASME J. Heat Trans.
,
138
(
2
), p.
024501
. 10.1115/1.4031171
12.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Karimi
,
N.
, and
Alizadeh
,
A.
,
2018
, “
Transient Analysis of the Interactions Between a Heat Transferring, Radial Stagnation Flow, and a Rotating Cylinder-Magnetohydrodynamic and Nonuniform Transpiration Effects
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051017
. 10.1115/1.4040363
13.
Roediger
,
T.
,
Knauss
,
H.
, and
Srulijes
,
J.
,
2007
, “
A Novel Fast-Respdy Boundary-Layer Transition on Shock-Tube Wuring Transition to Turbulence in the Boundary Layer Behind a moving Shock Wave
,”
Int. Sym. Shock Wave
,
26
(
1
), pp.
415
420
. 10.1007/978-3-540-85168-4_66
14.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Karimi
,
N.
, and
Alizadeh
,
A.
,
2018
, “
Transient Analysis of the Interactions Between a Heat Transferring, Radial Stagnation Flow, and a Rotating Cylinder-Magnetohydrodynamic and Nonuniform Transpiration Effects
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051017
. 10.1115/1.4040363
15.
Hu
,
D. P.
,
Yu
,
Y.
,
Liu
,
P. Q.
,
Wu
,
X. L.
, and
Zhao
,
Y. M.
,
2019
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic
,”
ASME J. Energy Resour.
,
141
(
2
), p.
022004
. 10.1115/1.4041722
16.
Zhao
,
J. Q.
, and
Hu
,
D. P.
,
2017
, “
An Improved Wave Rotor Refrigerator Using an Outside Gas Flow for Recycling the Expansion Work
,”
Shock Waves
,
27
(
2
), pp.
325
332
. 10.1007/s00193-016-0648-x
17.
Hu
,
D. P.
,
Yu
,
Y.
, and
Liu
,
P. Q.
,
2017
, “
Enhancement of Refrigeration Performance by Energy Transfer of Shock Wave
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
309
318
.
18.
Deng
,
S.
,
Koji
,
O.
, and
Toshio
,
N.
,
2015
, “
Numerical Investigation of Heat Transfer Effects in Small Wave Rotor
,”
J Mech. Sci. Technol.
,
29
(
3
), pp.
939
950
. 10.1007/s12206-015-0208-9
19.
Koji
,
O.
, and
Toshio
,
N.
,
2007
, “
Visualization of Wave Rotor Inner Flow Dynamics
,”
J. Propul. Power
,
23
(
2
), pp.
292
300
. 10.2514/1.18439
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Wiley McGraw-Hill
,
New York
, pp.
54
,
79
82
.
21.
Frank
,
P. I.
, and
David
,
P. D.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
, p.
445
.
22.
Kakaç
,
S.
, and
Liu
,
H.
,
2002
,
Heat Exchangers: Selection, Rating, and Thermal Design
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, p.
85
.
23.
Yunus
,
A. C.
, and
Michaea
,
A. B.
,
2010
,
Thermodynamics an Engineering Approach
, 8th ed.,
McGraw-Hill
,
New York
, pp.
134
138
.
24.
Liu
,
P. Q.
,
Wu
,
K. H.
,
Liu
,
S.
,
Tan
,
W. H.
,
Zhu
,
C.
, and
Hu
,
D. P.
,
2018
, “
Mechanism Analysis of Weakening Reverse Compression Waves in Gas Wave Refrigerator
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061013
. 10.1115/1.4040895
25.
Bovo
,
M.
, and
Davidson
,
L.
,
2015
, “
Direct Comparison of LES and Experiment of a Single-Pulse Impinging Jet
,”
Int. Commun. Heat Mass
,
88
(
1
), pp.
102
110
. 10.1016/j.ijheatmasstransfer.2015.04.025
26.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z. G.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
27.
Hahn
,
M.
, and
Drikakis
,
D.
,
2009
, “
Assessment of Large-Eddy Simulation for Separated Internal Flow
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
AIAA Paper No. 2008-0667
.
28.
Luikov
,
A. V.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
New York
, pp.
238
240
.
29.
Holman
,
J. P.
,
2002
,
Heat Transfer
, 10th ed.,
McGraw-Hill
,
New York
, pp.
650
651
, 141–143.
You do not currently have access to this content.