Abstract

The boiling heat transfer for subcooled water flowing in a small-diameter tube was investigated experimentally and numerically. In the experiment, a platinum tube was used as an experimental tube (d = 1.0–2.0 mm) to conduct joule heating by direct current. The heat generation rate of the tube was controlled with an exponential function. The numerical simulation of boiling heat transfer for subcooled water flowing in the small-diameter tube was conducted using the commercial computational fluid dynamics (CFD) code, phoenics ver. 2013. The small-diameter tube was modeled in the simulation. As the boundary condition, the measured heat flux was given at the inner wall. The inlet temperature ranged from 302 to 312 K. The flow velocities of d = 1.0 mm and d = 2.0 mm were 9.29 m/s and 2.34 m/s, respectively. The three-dimensional analysis was carried out from non-boiling to the critical heat flux (CHF). Governing equations were discretized using the finite volume method in the phoenics. The semi-implicit method for pressure linked equation (SIMPLE) method was applied in the numerical simulation. For modeling boiling phenomena in the tube, the Eulerian–Eulerian two-fluid model was adopted using the interphase slip algorithm of phoenics. The surface temperature difference increased as the heat flux increased in the experiment. The numerical simulation predicted the experimental data well. When the heat flux of the experiment reached the CHF point, the predicted value of the heat transfer coefficient was approximately 3.5% lower than that of the experiment.

References

1.
Shibahara
,
M.
,
Liu
,
Q. S.
, and
Fukuda
,
K.
,
2016
, “
Heat Transfer Characteristics of D-Mannitol as a Phase Change Material for a Medium Thermal Energy System
,”
Heat Mass Transfer
,
52
(
9
), pp.
1993
2004
. 10.1007/s00231-015-1716-y
2.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
,
Hata
,
K.
, and
Masuzaki
,
S.
,
2018
, “
Boiling Incipience of Subcooled Water Flowing in a Narrow Tube Using Wavelet Analysis
,”
Appl. Therm. Eng.
,
132
(
5
), pp.
595
604
. 10.1016/j.applthermaleng.2017.12.110
3.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
J. Electron. Packag.
,
133
(
4
), p.
41002
. 10.1115/1.4005300
4.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
, and
Hata
,
K.
,
2017
, “
Single-Phase Convective Heat Transfer in a Circular Minichannel With Unsteady Thermal Loads
,”
Heat Transfer Res.
,
53
(
9
), pp.
2999
3012
.
5.
Ali
,
H. M.
,
Generous
,
M. M.
,
Ahmad
,
F.
, and
Irfan
,
M.
,
2017
, “
Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2-Water Based Nanofluids
,”
Appl. Therm. Eng.
,
113
(
25
), pp.
1146
1151
. 10.1016/j.applthermaleng.2016.11.127
6.
Mudawar
,
I.
, and
Bowers
,
M. B.
,
1999
, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling-I: CHF Data and Parametric Effects for Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1405
1428
. 10.1016/S0017-9310(98)00241-5
7.
Hall
,
D. D.
, and
Mudawar
,
I.
,
1999
, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling-II: High-CHF Database and Design Equations
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1429
1456
. 10.1016/S0017-9310(98)00242-7
8.
Hata
,
K.
, and
Masuzaki
,
S.
,
2010
, “
Subcooled Boiling Heat Transfer for Turbulent Flow of Water in a Short Vertical Tube
,”
J. Heat Transfer
,
132
(
1
), p.
11501
. 10.1115/1.3194768
9.
Celata
,
G. P.
,
Cumo
,
M.
,
Mariani
,
A.
,
Simoncini
,
M.
, and
Zummo
,
G.
,
1994
, “
Rationalization the Prediction of Existing Mechanistic Models for the Prediction of Water Subcooled Flow Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
347
360
. 10.1016/0017-9310(94)90035-3
10.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
,
1992
, “
Subcooled Water Flow Boiling CHF With Very High Heat Fluxes
,”
Rev. Gen. Therm.
,
31
(
362
), pp.
106
114
.
11.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
,
1993
, “
Burnout in Highly Subcooled Flow Boiling in Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
36
(
5
), pp.
1269
1285
. 10.1016/S0017-9310(05)80096-1
12.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
,
Hata
,
K.
,
Nakamura
,
Y.
,
Muroga
,
T.
,
Tokitani
,
M.
, and
Noto
,
H.
,
2016
, “
Transient Critical Heat Flux for Subcooled Boiling of Water Flowing Upward Through a Vertical Small-Diameter Tube With Exponentially Increasing Heat Inputs
,”
J. Therm. Sci. Technol.
,
11
(
3
), pp.
16
00377
. 10.1299/jtst.2016jtst0037
13.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
, and
Hata
,
K.
,
2017
, “
Steady and Transient Critical Heat Flux for Subcooled Water in a Mini Channel
,”
Int. J. Heat Mass Transfer
,
104
, pp.
267
275
. 10.1016/j.ijheatmasstransfer.2016.08.054
14.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
, and
Hata
,
K.
,
2017
, “
Correlation of High Critical Heat Flux During Flow Boiling for Water in a Small Tube at Various Subcooled Conditions
,”
Int. Commun. Heat Mass Transfer
,
82
, pp.
74
80
. 10.1016/j.icheatmasstransfer.2017.02.012
15.
Spalding
,
B.
,
2008
,
The Phoenics Encyclopaedia
,
Concentration Heat and Momentum Limited
,
London
.
16.
Shibahara
,
M.
,
Liu
,
Q. S.
, and
Fukuda
,
K.
,
2016
, “
Transient Forced Convection Heat Transfer for Nitrogen Gas Flowing Over Plate Heater With Exponentially Increasing Heat Input
,”
Int. J. Heat Mass Transfer
,
95
, pp.
405
415
. 10.1016/j.ijheatmasstransfer.2015.12.008
17.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
, and
Hata
,
K.
,
2018
, “
Prediction of Forced Convective Heat Transfer and Critical Heat Flux for Subcooled Water Flowing in Miniature Tubes
,”
Heat Mass Transfer
,
54
(
2
), pp.
501
508
. 10.1007/s00231-017-2155-8
18.
Shibahara
,
M.
,
Fukuda
,
K.
,
Liu
,
Q. S.
, and
Hata
,
K.
,
2017
, “
Steady and Transient Forced Convection Heat Transfer for Water Flowing in Small Tubes With Exponentially Increasing Heat Inputs
,”
Heat Mass Transfer
,
53
(
3
), pp.
787
797
. 10.1007/s00231-016-1860-z
19.
ANSI/ASME PTC 19.1-1985
,
Measurement Uncertainty, Supplement on Instruments and Apparatus, Part 1
, translated by JSME,
1987
, ISBN: 978-4-88-898043-2.
20.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k–ε Model for Predicting Wall Turbulence
,”
J. Fluid Eng.
,
103
(
3
), pp.
456
460
. 10.1115/1.3240815
21.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
,
1994
, “
Phase Distribution in Bubbly Two-Phase Flow in Vertical Ducts
,”
Int. J. Multiphase Flow
,
20
(
5
), pp.
805
818
. 10.1016/0301-9322(94)90095-7
22.
Anglart
,
H.
, and
Nylund
,
O.
,
1996
, “
CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundles
,”
Nucl. Eng. Des.
,
163
(
1–2
), pp.
81
98
. 10.1016/0029-5493(95)01160-9
23.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
. 10.1016/S0017-9310(97)00180-4
You do not currently have access to this content.