Abstract

Correlating combustion performance parameters to the main operating variables of combustors with mathematical expressions contributes to reducing the number of experiments and simplifying the design procedure of gas turbines. The application of empirical formulations meets the requirement with finite precision. The present study aims at adopting symbolic regression method to establish empirical formulations to correlate combustion efficiency with the main operating variables of gas turbine combustors. Differing from ordinary data modeling methods that search model parameters only with model structures fixed, symbolic regression method can search the structures and parameters of mathematical models simultaneously. In this article, attempts to correlate the experimental data of Combustor I using the mechanism model of burning velocity model, neural network, polynomial regression, and symbolic regression are shown sequentially. Burning velocity model has not satisfactory accuracy by comparing the predictions with the experimental data which means its lower generalization ability. Comparatively, the predictions of the empirical formulation obtained by the present symbolic regression method are in good agreement with the experimental data and also excel those of neural network and polynomial regression in generalization ability. Another two formulations are obtained by symbolic regression using the experimental data of Combustor II and III, and the different model structures of the two formulations indicate that there is still room for improvement in the present method.

References

1.
Greenhough
,
V. W.
, and
Lefebvre
,
A. H.
,
1957
, “
Some Applications of Combustion Theory to Gas Turbine Development
,”
Symp. (Int.) Combust.
,
6
(
1
), pp.
858
869
. 10.1016/S0082-0784(57)80122-2
2.
Longwell
,
J. P.
, and
Weiss
,
M. A.
,
1955
, “
High Temperature Reaction Rates in Hydrocarbon Combustion
,”
Ind. Eng. Chem.
,
47
(
8
), pp.
1634
1643
. 10.1021/ie50548a049
3.
Schlein
,
B.
,
1985
, “
Gas Turbine Combustion Efficiency
,”
Proceedings of the ASME 1985 Beijing International Gas Turbine Symposium and Exposition. Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels
,
Beijing, People’s Republic of China
,
Sept. 1–7
, p. V002T04A019.
4.
Herbert
,
M. V.
,
1961
, “
A Theoretical Analysis of Reaction Rate Controlled Systems: Part II
,”
Symp. (Int.) Combust.
,
8
(
1
), pp.
970
982
. 10.1016/S0082-0784(06)80593-X
5.
Odgers
,
J.
, and
Carrier
,
C.
,
1973
, “
Modelling of Gas Turbine Combustors; Considerations of Combustion Efficiency and Stability
,”
J. Eng. Power
,
95
(
2
), pp.
105
113
. 10.1115/1.3445695
6.
Kretschmer
,
D.
, and
Odgers
,
J.
,
1972
, “
Modeling of Gas Turbine Combustors—A Convenient Reaction Rate Equation
,”
J. Eng. Power
,
94
(
3
), pp.
173
180
. 10.1115/1.3445669
7.
Mishra
,
R. K.
,
Bhat
,
M. N.
, and
Sampathkumaran
,
T. K.
,
2000
, “
Combustion Efficiency Study in an Annular Aero Gas Turbine Combustor
,”
Proceedings of the 5th National Conference on Airbreathing Engines and Aerospace Propulsion (NCABE 2000)
,
Hyderabad, India
,
Dec. 21–23
, pp.
1
7
.
8.
Belokon
,
A. A.
,
Khritov
,
K. M.
, and
Klyachko
,
L. A.
,
2002
, “
Prediction of Combustion Efficiency and NOx Levels for Diffusion Flame Combustors in HAT Cycles
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 1: Turbo Expo
,
Amsterdam, the Netherlands
,
June 3–6
, pp.
791
797
.
9.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1986
, “
Gas Turbine Combustor Design Methodology
,”
AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference
,
Huntsville, AL
,
June 16–18
, Paper No. AIAA-86-1531.
10.
Mongia
,
H. C.
,
2004
, “
Combining Lefebvre’s Correlations With Combustor CFD
,”
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Fort Lauderdale, FL
,
July 11–14
, Paper No. AIAA 2004-3544.
11.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1989
, “
3-D Combustor Performance Validation With High Density Fuels
,”
27th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
, Paper No. AIAA 89-0219.
12.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1989
, “
A 3-D Analysis of Gas Turbine Combustors
,”
AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference
,
Monterey, CA
,
July 10–12
, Paper No. AIAA 89-2888.
13.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1990
, “
Three-Dimensional Combustor Performance Validation With High-Density Fuels
,”
J. Propul. Power
,
6
(
5
), pp.
660
667
. 10.2514/3.23268
14.
Cai
,
W.
,
2012
, “
Numerical Prediction of Two-Phase Reacting Flow Field and Performance in an Aeroengine Combustor
,”
J. Aerosp. Eng.
,
25
(
2
), pp.
151
160
. 10.1061/(ASCE)AS.1943-5525.0000108
15.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1991
, “
Three-Dimensional Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
7
(
3
), pp.
445
451
. 10.2514/3.23346
16.
Moriaki
,
N.
, and
Toshiyuki
,
T.
,
2012
, “
Aero-Thermodynamic Consideration of Single-Crystal-Silicon Premixed-Fuel Microscale Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071501
. 10.1115/1.4006059
17.
Prakash
,
A.
,
2015
, “
Prediction of NOX Emissions for an RQL Combustor Using a Stirred Reactor Modelling Approach
,” Ph.D. thesis,
Cranfield University
,
Cranfield, UK
.
18.
Lilley
,
D.
, and
Gupta
,
A. K.
,
2004
, “
Combustion Efficiency and the Theta-Parameter in the Design and Development of Gas Turbine Combustors
,”
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Fort Lauderdale, FL
,
July 11–14
, Paper No. AIAA 2004-3543.
19.
Lefebvre
,
A. H.
,
1966
, “
Theoretical Aspects of Gas Turbine Combustion Performance
,” Aero Notes. No. 163, The College of Aeronautics, Department of Propulsion, Cranfield University.
20.
Lefebvre
,
A. H.
, and
Hall
,
G.
,
1959
, “Some Experiences in Combustion Scaling,”
Advanced Aero Engine Testing
,
A. W.
Morlev
, and
J.
Fabri
, eds.,
Pergamon Press
,
New York
, pp.
177
204
.
21.
Lefebvre
,
A. H.
,
1985
, “
Fuel Effects on Gas Turbine Combustion—Ignition, Stability and Combustion Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
24
37
. 10.1115/1.3239693
22.
Koza
,
J. R.
,
1992
,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,
MIT Press
,
Cambridge, MA
.
23.
Quade
,
M.
,
Abel
,
M.
,
Shafi
,
K.
,
Niven
,
R. K.
, and
Noack
,
B. R.
,
2016
, “
Prediction of Dynamical Systems by Symbolic Regression
,”
Phys. Rev. E
,
94
(
1
), p.
012214
. 10.1103/PhysRevE.94.012214
24.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
24
), pp.
9943
9948
. 10.1073/pnas.0609476104
25.
Schmidt
,
M. D.
,
Vallabhajosyula
,
R. R.
,
Jenkins
,
J. W.
,
Hood
,
J.
,
Soni
,
A. S.
,
Wikswo
,
J. P.
, and
Lipson
,
H.
,
2011
, “
Automated Refinement and Inference of Analytical Models for Metabolic Networks
,”
Phys. Biol.
,
8
(
5
), p.
055011
. 10.1088/1478-3975/8/5/055011
26.
Ferariu
,
L.
, and
Patelli
,
A.
,
2009
, “
Migration-based Multiobjective Genetic Programming for Nonlinear System Identification
,”
5th International Symposium on Applied Computational Intelligence and Informatics
,
Timisoara, Romania
,
May 28–29
, pp.
475
480
. 10.1109/SACI.2009.5136295
27.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
. 10.1126/science.1165893
28.
Jones
,
A. W.
, and
Cook
,
W. P.
,
1952
, “
Combustion Efficiency Performance of a MIL-F-5624 Type Fuel and Monomethylnaphthalene in a Single Vaporizing-Type Combustor
,” Technical Report No. NACA RM E5lK30, National Advisory Committee for Aeronautics.
29.
Fear
,
J. S.
,
1972
, “
Performance of a Small Annular Turbojet Combustor Designed for Low Cost
,” Technical Report No. NASA TM X-2476, National Aeronautics and Space Administration.
30.
Awange
,
J. L.
, and
Paláncz
,
B.
,
2016
,
Geospatial Algebraic Computations
, 3rd ed.,
Springer
,
Cham, Switzerland
, Chap. 11.
31.
Goldberg
,
D.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley Publishing Company
,
Reading, MA
.
32.
Luke
,
S.
,
2000
, “
Two Fast Tree-Creation Algorithms for Genetic Programming
,”
IEEE Trans. Evol. Comput.
,
4
(
3
), pp.
274
283
. 10.1109/4235.873237
33.
Silva
,
S.
, and
Costa
,
E.
,
2004
, “Dynamic Limits for Bloat Control,”
Genetic and Evolutionary Computation—GECCO 2004
,
K.
Deb
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
666
677
.
34.
Campbell
,
C. E.
,
1951
, “
Combustion-Chamber Performance Characteristics of a Python Turbine-Propeller Engine Investigated
,” Technical Report No. NACA RM E51G25, National Advisory Committee for Aeronautics.
35.
Gurney
,
K.
,
1997
,
An Introduction to Neural Networks
,
Taylor & Francis
,
Philadelphia, PA
.
36.
Witten
,
I.
,
Frank
,
E.
,
Hall
,
M.
, and
Pal
,
C.
,
2016
,
Data Mining: Practical Machine Learning Tools and Techniques
,
Morgan Kaufmann
,
Cambridge, MA
.
37.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
. 10.1109/72.329697
38.
Perez
,
D.
, and
Quintana
,
Y.
,
2008
, “
A Survey on the Weierstrass Approximation Theorem
,”
Divulg. Mat.
,
16
(
1
), pp.
231
247
. 10.1002/9781118445112.stat02389
39.
Montgomery
,
D.
,
Peck
,
E.
, and
Vining
,
G.
,
2012
,
Introduction to Linear Regression Analysis
,
Wiley
,
New York
.
40.
Sen
,
A.
,
Srivastava
,
M.
, and
Muni
,
S.
,
1990
,
Regression Analysis: Theory, Methods, and Applications
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.