Abstract

A simplified model to predict the performance of a novel sub-wet bulb evaporative chiller (SWEC) for producing chilled water is presented. The SWEC design uses a daisy-chained arrangement of cross-flow heat exchangers (HXs) with evaporative media located in between the heat exchangers to chill water below the outdoor wet bulb temperature (WB) in either a one-pass or two-pass arrangement. Sub-models, based on the effectiveness-number of transfer units (ɛ-NTU) method, for the heat exchanger and evaporative media are coupled together to form the SWEC model. The model is validated using field data from a SWEC that is designed with a single water pass. The model results are observed to match the SWEC experimental data within a mean average error (MAE) of 0.74% in supply chilled water temperature and 5.6% in chiller capacity over a range of outdoor air dry bulb and wet bulb temperatures, inlet water temperatures, and water flowrates. The validated model is then used in a parametric study of geometrical and thermofluidic variables. The model is also used to predict the performance of the SWEC in a typical hot and dry weather over a summer week.

References

1.
He
,
S.
,
Gurgenci
,
H.
,
Guan
,
Z.
, and
Alkhedhair
,
A. M.
,
2013
, “
Pre-cooling With Munters Media to Improve the Performance of a Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
53
(
1
), pp.
67
77
. 10.1016/j.applthermaleng.2012.12.033
2.
He
,
S.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Hooman
,
K.
,
Lu
,
Y.
, and
Alkhedhair
,
A. M.
,
2014
, “
Experimental Study of Film Media Used for Evaporative Pre-Cooling of Air
,”
Energy Convers. Manage.
,
87
, pp.
874
884
. 10.1016/j.enconman.2014.07.084
3.
Dai
,
Y.
, and
Sumathy
,
K.
,
2002
, “
Theoretical Study on a Cross-Flow Direct Evaporative Cooler Using Honeycomb Paper as Packing Material
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1417
1430
. 10.1016/S1359-4311(02)00069-8
4.
Malli
,
A.
,
Seyf
,
H. R.
,
Layeghi
,
M.
,
Sharifian
,
S.
, and
Behravesh
,
H.
,
2011
, “
Investigating the Performance of Cellulosic Evaporative Cooling Pads
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2598
2603
. 10.1016/j.enconman.2010.12.015
5.
Koca
,
R.
,
Hughes
,
W.
, and
Christianson
,
L.
,
1991
, “
Evaporative Cooling Pads: Test Procedure and Evaluation
,”
Appl. Eng. Agric.
,
7
(
4
), pp.
485
490
. 10.13031/2013.26250
6.
Franco
,
A.
,
Valera
,
D.
,
Madueno
,
A.
, and
Pena
,
A.
,
2010
, “
Influence of Water and Air Flow on the Performance of Cellulose Evaporative Cooling Pads Used in Mediterranean Greenhouses
,”
Trans. ASABE
,
53
(
2
), pp.
565
576
. 10.13031/2013.29571
7.
Duan
,
Z.
,
Zhan
,
C.
,
Zhang
,
X.
,
Mustafa
,
M.
,
Zhao
,
X.
,
Alimohammadisagvand
,
B.
, and
Hasan
,
A.
,
2012
, “
Indirect Evaporative Cooling: Past, Present and Future Potentials
,”
Renewable Sustainable Energy Rev.
,
16
(
9
), pp.
6823
6850
. 10.1016/j.rser.2012.07.007
8.
Hsu
,
S. T.
,
Lavan
,
Z.
, and
Worek
,
W. M.
,
1989
, “
Optimization of Wet-Surface Heat Exchangers
,”
Energy
,
14
(
11
), pp.
757
770
. 10.1016/0360-5442(89)90009-1
9.
Glanville
,
P.
,
Kozlov
,
A.
, and
Maisotsenko
,
V.
,
2011
, “
Dew Point Evaporative Cooling: Technology Review and Fundamentals
,”
ASHRAE Trans.
,
117
(
1
), pp.
111
118
.
10.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Experimental and Numerical Investigation of a Dew-Point Cooling System for Thermal Comfort in Buildings
,”
Appl. Energy
,
132
, pp.
524
535
. 10.1016/j.apenergy.2014.07.040
11.
Anisimov
,
S.
,
Pandelidis
,
D.
, and
Danielewicz
,
J.
,
2014
, “
Numerical Analysis of Selected Evaporative Exchangers With the Maisotsenko Cycle
,”
Energy Convers. Manage.
,
88
, pp.
426
441
. 10.1016/j.enconman.2014.08.055
12.
Riangvilaikul
,
B.
, and
Kumar
,
S.
,
2010
, “
An Experimental Study of a Novel Dew Point Evaporative Cooling System
,”
Energ. Buildings
,
42
(
5
), pp.
637
644
. 10.1016/j.enbuild.2009.10.034
13.
Moshari
,
S.
, and
Heidarinejad
,
G.
,
2015
, “
Numerical Study of Regenerative Evaporative Coolers for Sub-wet Bulb Cooling With Cross- and Counter-Flow Configuration
,”
Appl. Therm. Eng.
,
89
, pp.
669
683
. 10.1016/j.applthermaleng.2015.06.046
14.
Hasan
,
A.
,
2012
, “
Going Below the Wet-Bulb Temperature by Indirect Evaporative Cooling: Analysis Using a Modified e-NTU Method
,”
Appl. Energy
,
89
(
1
), pp.
237
245
. 10.1016/j.apenergy.2011.07.005
15.
Zhan
,
C.
,
Zhao
,
X.
,
Smith
,
S.
, and
Riffat
,
S. B.
,
2011
, “
Numerical Study of a M-Cycle Cross-Flow Heat Exchanger for Indirect Evaporative Cooling
,”
Build. Environ.
,
46
(
3
), pp.
657
668
. 10.1016/j.buildenv.2010.09.011
16.
Xie
,
X.
, and
Jiang
,
Y.
,
2015
, “
Comparison of Two Kinds of Indirect Evaporative Cooling Systems: To Produce Cold Water and to Produce Cooling Air
,”
Procedia Eng.
,
121
, pp.
881
890
. 10.1016/j.proeng.2015.09.044
17.
Jiang
,
Y.
, and
Xie
,
X.
,
2010
, “
Theoretical and Testing Performance of an Innovative Indirect Evaporative Chiller
,”
Sol. Energy
,
84
(
12
), pp.
2041
2055
. 10.1016/j.solener.2010.09.012
18.
Jarvis
,
E.
,
2010
,
Sub-wet Bulb Evaporative Chiller With Pre-cooling of Incoming Air Flow
, U.S. Patent 7,698,906 B2,
Apr. 20, 2010
.
19.
Morini
,
G. L.
,
2000
, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts With Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
741
755
. 10.1016/S0017-9310(99)00188-X
20.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
New York
.
21.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Elsevier, Amsterdam
,
The Netherlands
.
22.
Halasz
,
B.
,
1998
, “
A General Mathematical Model of Evaporative Cooling Devices
,”
Rev. Gen. Therm.
,
37
(
4
), pp.
245
255
. 10.1016/S0035-3159(98)80092-5
23.
Halasz
,
B.
,
1999
, “
Application of a General Non-Dimensional Mathematical Model to Cooling Towers
,”
Int. J. Therm. Sci.
,
38
(
1
), pp.
75
88
. 10.1016/S0035-3159(99)80018-X
24.
Al-Ismaili
,
M.
,
Weatherhead
,
E.
, and
Badr
,
O.
,
2010
, “
Validation of Halasz’s Non-Dimensional Model Using Cross-Flow Evaporative Coolers Used in Greenhouses
,”
Biosyst. Eng.
,
107
(
2
), pp.
86
96
. 10.1016/j.biosystemseng.2010.07.004
25.
Dowdy
,
J.
, and
Karabash
,
N.
,
1987
, “
Experimental Determination of Heat and Mass Transfer Coefficients in Rigid Impregnated Cellulose Evaporative Media
,”
ASHRAE Trans.
,
93
(
2
), pp.
382
395
.
26.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
You do not currently have access to this content.