Abstract

The drive for small and compact electronic components with higher processing capabilities is limited by their ability to dissipate the associated heat generated during operations, and hence, more advanced heat sink designs are required. Recently, the emergence of additive manufacturing techniques facilitated the fabrication of complex structures and overcame the limitation of traditional techniques such as milling, drilling, and casting. Therefore, complex heat sink designs are now easily realizable. In this study, we propose a design procedure for mathematically realizable architected heat sinks and investigate their performance using the computational fluid dynamics (CFD) approach. The proposed heat sinks are mathematically designed with topologies based on triply periodic minimal surfaces (TPMSs). Three-dimensional CFD models are developed using the starccm+ platform for uniform heat sinks and topologically graded heat sinks to study the heat transfer performance in forced convection domains. The overall heat transfer coefficient, surface temperature, and pressure drop versus the input heat sources as well as the Reynolds number are used to evaluate the heat sink performance. Moreover, temperature contours and velocity streamlines were examined to analyze the fluid flow behavior within the heat sinks. Results showed that the tortuosity and channel complexity of the Diamond solid-networks heat sink result in a 32% increase in convective heat transfer coefficient compared with the Gyroid solid-network heat sink which has the comparable surface area under the examined flow conditions. This increase is at the expense of increased pressure drops which increases by the same percentage. In addition, it was found that expanding channel size along flow direction using the porosity grading approach results in significant pressure drop (27.6%), while the corresponding drop in convective heat transfer is less significant (15.7%). These results show the importance of employing functional grading in the design of heat sinks. Also, the manufacturability of the proposed designs was assessed using computerized tomography (CT) scan and scanning electron microscopy (SEM) imaging performed on metallic samples fabricated using powder bed fusion techniques. A visible number of internal manufacturing defects can affect the performance of the proposed heat sinks.

References

1.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
. 10.1016/j.mattod.2014.04.003
2.
Shabany
,
Y.
,
2009
,
Heat Transfer: Thermal Management of Electronics
,
CRC Press
,
Boca Raton, FL
.
3.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
4.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
5.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
420
442
. 10.1016/j.rser.2018.03.109
6.
Wong
,
K. K.
,
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2016
, “
Fabrication of Heat Sinks by Selective Laser Melting for Convective Heat Transfer Applications
,”
Virtual Phys. Prototyping
,
11
(
3
), pp.
159
165
. 10.1080/17452759.2016.1211849
7.
Ho
,
J. Y.
,
Wong
,
K. K.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2017
, “
Convective Heat Transfer Performance of Airfoil Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
114
, pp.
213
228
. 10.1016/j.ijthermalsci.2016.12.016
8.
Wong
,
K. K.
, and
Leong
,
K. C.
,
2018
, “
Saturated Pool Boiling Enhancement Using Porous Lattice Structures Produced by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
121
, pp.
46
63
. 10.1016/j.ijheatmasstransfer.2017.12.148
9.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2019
, “
Experimental and Numerical Investigation of Forced Convection Heat Transfer in Porous Lattice Structures Produced by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
137
, pp.
276
287
. 10.1016/j.ijthermalsci.2018.11.022
10.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
. 10.1016/j.mechmat.2003.07.001
11.
Suleiman
,
A. S.
, and
Dukhan
,
N.
,
2014
, “
Long-Domain Simulation of Flow in Open-Cell Mesoporous Metal Foam and Direct Comparison to Experiment
,”
Micropor. Mesopor. Mater.
,
196
, pp.
104
114
. 10.1016/j.micromeso.2014.05.003
12.
Shamvedi
,
D.
,
McCarthy
,
O. J.
,
O’Donoghue
,
E.
,
Danilenkoff
,
C.
,
O’Leary
,
P.
, and
Raghavendra
,
R.
,
2018
, “
3D Metal Printed Heat Sinks With Longitudinally Varying Lattice Structure Sizes Using Direct Metal Laser Sintering
,”
Virtual Phys. Prototyp.
,
13
(
4
), pp.
301
310
. 10.1080/17452759.2018.1479528
13.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
. 10.1016/j.ijthermalsci.2018.11.031
14.
Al-Ketan
,
O.
,
Pelanconi
,
M.
,
Ortona
,
A.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
Additive Manufacturing of Architected Catalytic Ceramic Substrates Based on Triply Periodic Minimal Surfaces
,”
J. Am. Ceram. Soc.
,
102
(
10
), pp.
6176
6193
. 10.1111/jace.16474
15.
Sreedhar
,
N.
,
Thomas
,
N.
,
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Hernandez
,
H.
,
Abu Al-Rub
,
R. K.
, and
Arafat
,
H. A.
,
2018
, “
3D Printed Feed Spacers Based on Triply Periodic Minimal Surfaces for Flux Enhancement and Biofouling Mitigation in RO and UF
,”
Desalination
,
425
, pp.
12
21
. 10.1016/j.desal.2017.10.010
16.
Sreedhar
,
N.
,
Thomas
,
N.
,
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Hernandez
,
H. H.
,
Abu Al-Rub
,
R. K.
, and
Arafat
,
H. A.
,
2018
, “
Mass Transfer Analysis of Ultrafiltration Using Spacers Based on Triply Periodic Minimal Surfaces: Effects of Spacer Design, Directionality and Voidage
,”
J. Membr. Sci.
,
561
, pp.
89
98
. 10.1016/j.memsci.2018.05.028
17.
Castillo
,
E. H. C.
,
Thomas
,
N.
,
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Abu Al-Rub
,
R. K.
,
Nghiem
,
L. D.
,
Vigneswaran
,
S.
,
Arafat
,
H. A.
, and
Naidu
,
G.
,
2019
, “
3D Printed Spacers for Organic Fouling Mitigation in Membrane Distillation
,”
J. Membr. Sci.
,
581
, pp.
331
343
. 10.1016/j.memsci.2019.03.040
18.
Thomas
,
N.
,
Sreedhar
,
N.
,
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Abu Al-Rub
,
R. K.
, and
Arafat
,
H.
,
2019
, “
3D Printed Spacers Based on TPMS Architectures for Scaling Control in Membrane Distillation
,”
J. Membr. Sci.
,
581
, pp.
38
49
. 10.1016/j.memsci.2019.03.039
19.
Al-Ketan
,
O.
,
Soliman
,
A.
,
AlQubaisi
,
A. M.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
Nature-Inspired Lightweight Cellular Co-Continuous Composites With Architected Periodic Gyroidal Structures
,”
Adv. Eng. Mater.
,
20
(
2
), p.
1700549
. 10.1002/adem.201700549
20.
Femmer
,
T.
,
Kuehne
,
A. J. C.
, and
Wessling
,
M.
,
2015
, “
Estimation of the Structure Dependent Performance of 3D Rapid Prototyped Membranes
,”
Chem. Eng. J.
,
273
, pp.
438
445
. 10.1016/j.cej.2015.03.029
21.
Catchpole-Smith
,
S.
,
Sélo
,
R. R. J.
,
Davis
,
A. W.
,
Ashcroft
,
I. A.
,
Tuck
,
C. J.
, and
Clare
,
A.
,
2019
, “
Thermal Conductivity of TPMS Lattice Structures Manufactured via Laser Powder Bed Fusion
,”
Addit. Manuf.
,
30
, p.
100846
. 10.1016/j.addma.2019.100846
22.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices
,”
Adv. Eng. Mater.
,
21
(
10
), p.
1900524
. 10.1002/adem.201900524
23.
Bianchi
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freund
,
H.
, and
Tronconi
,
E.
,
2013
, “
Heat Transfer Properties of Metal Foam Supports for Structured Catalysts: Wall Heat Transfer Coefficient
,”
Catal. Today
,
216
, pp.
121
134
. 10.1016/j.cattod.2013.06.019
24.
Horneber
,
T.
,
Rauh
,
C.
, and
Delgado
,
A.
,
2012
, “
Fluid Dynamic Characterisation of Porous Solids in Catalytic Fixed-Bed Reactors
,”
Micropor. Mesopor. Mater.
,
154
, pp.
170
174
. 10.1016/j.micromeso.2011.12.047
25.
Al-Ketan
,
O.
,
Abu Al-Rub
,
R. K.
, and
Rowshan
,
R.
,
2018
, “
Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials
,”
Adv. Mater. Technol.
,
2
(
2
), p.
1600235
. 10.1002/admt.201600235
26.
Al-Ketan
,
O.
,
Adel Assad
,
M.
, and
Abu Al-Rub
,
R. K.
,
2017
, “
Mechanical Properties of Periodic Interpenetrating Phase Composites With Novel Architected Microstructures
,”
Compos. Struct.
,
176
, pp.
9
19
. 10.1016/j.compstruct.2017.05.026
27.
Al-Ketan
,
O.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2017
, “
Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials
,”
Addit. Manuf.
,
19
, pp.
167
183
. 10.1016/j.addma.2017.12.006
28.
Vijayavenkataraman
,
S.
,
Zhang
,
L.
,
Zhang
,
S.
,
Hsi Fuh
,
J. Y.
, and
Lu
,
W. F.
,
2018
, “
Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach Toward Biomimetic Scaffold Design
,”
ACS Appl. Bio Mater.
,
1
(
2
), pp.
259
269
. 10.1021/acsabm.8b00052
29.
Van Bael
,
S.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Kruth
,
J. P.
,
2011
, “
Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti6Al4V Porous Structures
,”
Mater. Sci. Eng. A
,
528
(
24
), pp.
7423
7431
. 10.1016/j.msea.2011.06.045
30.
Kumbhar
,
N. N.
, and
Mulay
,
A. V.
,
2018
, “
Post Processing Methods Used to Improve Surface Finish of Products Which Are Manufactured by Additive Manufacturing Technologies: A Review
,”
J. Inst. Eng: Series C
,
99
(
4
), pp.
481
487
. 10.1007/s40032-016-0340-z
31.
de Formanoir
,
C.
,
Suard
,
M.
,
Dendievel
,
R.
,
Martin
,
G.
, and
Godet
,
S.
,
2016
, “
Improving the Mechanical Efficiency of Electron Beam Melted Titanium Lattice Structures by Chemical Etching
,”
Addit. Manuf.
,
11
, pp.
71
76
. 10.1016/j.addma.2016.05.001
32.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
. 10.1016/j.addma.2014.12.008
33.
Han
,
S. C.
,
Lee
,
J. W.
, and
Kang
,
K.
,
2015
, “
A New Type of Low Density Material: Shellular
,”
Adv. Mater.
,
27
(
37
), pp.
5506
5511
. 10.1002/adma.201501546
34.
Han
,
S. C.
,
Choi
,
J. M.
,
Liu
,
G.
, and
Kang
,
K.
,
2017
, “
A Microscopic Shell Structure With Schwarz’s D-Surface
,”
Sci. Rep.
,
7
(
1
), p.
13405
. 10.1038/s41598-017-13618-3
You do not currently have access to this content.