Abstract

This work assesses the thermal performance of gold nanofluid as a cooling liquid in a shell and helically coiled tube (SHCT) heat exchanger (HE) built at the bench scale. Tests planned under a multi-level factorial experimental design were carried out to evaluate the effects of the volumetric fraction of the gold nanoparticles, the volumetric flowrate of the working fluid, and the inlet temperature of the hot fluid (water) on the SHCT heat exchanger effectiveness. Spherical gold nanoparticles with a mean diameter of 14 ± 2 nm were produced using Turkevich’s method to be used at two concentrations of approximately 10−5 vol%. The heat transfer tests were performed at volumetric flowrates of 20, 30, and 40 l/h for both working fluids using heated water at inlet temperatures of 40, 50, and 60 °C. Results showed that the less concentrated nanofluids were comparatively more efficient, suggesting the presence of a range of gold concentration values for improving the heat transfer effectiveness.

References

1.
Zendehboudi
,
A.
,
Saidur
,
R.
,
Mahbubul
,
I. M.
, and
Hosseini
,
S. H.
,
2019
, “
Data-Driven Methods for Estimating the Effective Thermal Conductivity of Nanofluids: A Comprehensive Review
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1211
1231
. 10.1016/j.ijheatmasstransfer.2018.11.053
2.
Kumar
,
V.
, and
Sarkar
,
J.
,
2019
, “
Research and Development on Composite Nanofluids as Next Generation Heat Transfer Medium
,”
J. Therm. Anal. Calorim.
,
137
(
4
), pp.
1133
1154
. 10.1007/s10973-019-08025-x
3.
Fares
,
M.
,
Al-Mayyahi
,
M.
, and
Al-Saad
,
M.
,
2020
, “
Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated With Graphene Nanofluids
,”
Case Studies Therm. Eng.
,
18
. 10.1016/j.csite.2020.100584
4.
Nasiri
,
M.
,
Hojjat
,
M.
,
Etemad
,
S. G.
, and
Bagheri
,
R.
,
2020
, “
Cooling Performance of Newtonian and Non-Newtonian Nanofluids in a Square Channel: Experimental Investigation and ANN Modeling
,”
J. Therm. Anal. Calorim.
, pp.
1
14
. 10.1007/s10973-020-09309-3
5.
Khan
,
I.
,
Saeed
,
K.
, and
Khan
,
I.
,
2019
, “
Nanoparticles: Properties, Applications and Toxicities
,”
Arabian J. Chem.
,
12
(
7
), pp.
908
931
. 10.1016/j.arabjc.2017.05.011
6.
Kumar
,
A.
,
Mohammadj
,
M. M.
, and
Swihart
,
M. T.
,
2019
, “
Synthesis, Growth Mechanisms, and Applications of Palladium-Based Nanowires and Other One-Dimensional Nanostructures
,”
Nanoscale
,
11
(
41
), pp.
19058
19085
. 10.1039/C9NR05835D
7.
Bhatt
,
S.
,
Kumar
,
R.
, and
Kumar
,
M.
,
2017
, “
Specific Heat and Thermal Conductivity of Nanomaterials
,”
Mod. Phys. Lett. B
,
31
(
2
), pp.
1
13
. 10.1142/S0217984917500117
8.
Gao
,
L.
, and
Zhou
,
X. F.
,
2006
, “
Differential Effective Medium Theory for Thermal Conductivity in Nanofluids
,”
Phys. Lett. A
,
348
(
3–6
), pp.
355
360
. 10.1016/j.physleta.2005.08.069
9.
Ovando-Chacon
,
G. E.
,
Ovando-Chacon
,
S. L.
,
Rodriguez-Leon
,
A.
,
Diaz-Gonzalez
,
M.
,
Hernandez-Zarate
,
J. A.
, and
Servin-Martinez
,
A.
,
2020
, “
Numerical Study of Nanofluid Irreversibilities in a Heat Exchanger Used With an Aqueous Medium
,”
Entropy
,
22
(
1
), pp.
1
18
. 10.3390/e22010086
10.
Ahmadi
,
M. H.
,
Mirlohi
,
A.
,
Nazari
,
M. A.
, and
Ghasempour
,
R.
,
2018
, “
A Review of Thermal Conductivity of Various Nanofluids
,”
J. Mol. Liq.
,
265
, pp.
181
188
. 10.1016/j.molliq.2018.05.124
11.
Guo
,
W.
,
Li
,
G.
,
Zheng
,
Y.
, and
Dong
,
C.
,
2018
, “
Measurement of the Thermal Conductivity of SiO2 Nanofluids With an Optimized Transient Hot Wire Method
,”
Thermochim. Acta
,
661
, pp.
84
97
. 10.1016/j.tca.2018.01.008
12.
Sivashanmugam
,
P.
,
2012
, “Application of Nanofluids in Heat Transfer,”
Chapter 14 in An Overview of Heat Transfer Phenomena
,
S. N.
Kazi
, ed.,
InTech
,
London, UK
.
13.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), pp.
1
10
. 10.1063/1.3155999
14.
Hamdeh
,
N. H. A.
,
Bantan
,
R. A. R.
, and
Tlili
,
I.
,
2020
, “
Analysis of the Thermal and Hydraulic Performance of the Sector-by-Sector Helically Coiled Tube Heat Exchangers as a New Type of Heat Exchanger
,”
Int. J. Therm. Sci.
,
150
, pp.
1
17
. 10.1016/j.ijthermalsci.2019.106229
15.
Ali
,
M.
,
Rad
,
M. M.
,
Nuhait
,
A.
,
Almuzaiqer
,
R.
,
Alimoradi
,
A.
, and
Tlili
,
I.
,
2020
, “
New Equations for Nusselt Number and Friction Factor of the Annulus Side of the Conically Coiled Tubes in Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
164
, pp.
1
13
. 10.1016/j.applthermaleng.2019.114545
16.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
, 8th ed.,
John Wiley & Sons
,
Hoboken
.
17.
Mohapatra
,
T.
,
Sahoo
,
S. S.
, and
Padhi
,
B. N.
,
2019
, “
Analysis, Prediction and Multi-Response Optimization of Heat Transfer Characteristics of a Three Fluid Heat Exchanger Using Response Surface Methodology and Desirability Function Approach
,”
Appl. Therm. Eng.
,
151
, pp.
536
555
. 10.1016/j.applthermaleng.2019.02.001
18.
Grine
,
W.
, and
Benhamza
,
M. E. H.
,
2019
, “
Modeling the Effective Thermal Conductivity of Nanofluids Using Full Factorial Design Analysis
,”
Heat Transfer—Asia Res.
,
48
(
7
), pp.
2930
2947
. 10.1002/htj.21524
19.
Zhang
,
J. F.
,
Jia
,
L.
,
Yang
,
W. W.
,
Taler
,
J.
, and
Oclon
,
P.
,
2019
, “
Numerical Analysis and Parametric Optimization on Flow and Heat Transfer of a Microchannel With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
141
, pp.
211
221
. 10.1016/j.ijthermalsci.2019.03.036
20.
Gunes
,
S.
,
Senyigit
,
E.
,
Karakaya
,
E.
, and
Ozceyhan
,
V.
,
2019
, “
Optimization of Heat Transfer and Pressure Drop in a Tube With Loosefit Perforated Twisted Tapes by Taguchi Method and Grey Relational Analysis
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1795
1806
. 10.1007/s10973-018-7824-4
21.
Alimoradi
,
A.
,
2017
, “
Study of Thermal Effectiveness and Its Relation With NTU in Shell and Helically Coiled Tube Heat Exchangers
,”
Case Studies Therm. Eng.
,
9
, pp.
100
107
. 10.1016/j.csite.2017.01.003
22.
Sepehr
,
M.
,
Hashemi
,
S. S.
,
Rahjoo
,
M.
,
Farhgangmehr
,
V.
, and
Alimoradi
,
A.
,
2018
, “
Prediction of Heat Transfer, Pressure Drop and Entropy Generation in Shell and Helically Coiled Finned Tube Heat Exchangers
,”
Chem. Eng. Res. Des.
,
134
, pp.
277
291
. 10.1016/j.cherd.2018.04.010
23.
Beigzadeh
,
R.
, and
Rahimi
,
M.
,
2012
, “
Prediction of Thermal and Fluid Flow Characteristics in Helically Coiled Tubes Using ANFIS and GA Based Correlations
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1647
1653
. 10.1016/j.icheatmasstransfer.2012.10.011
24.
Barros
,
J. J. C.
,
Coira
,
M. L.
,
López
,
M. P. C.
, and
Gochi
,
A. C.
,
2019
, “
Sustainability Optimisation of Shell and Tube Heat Exchanger, Using a New Integrated Methodology
,”
J. Cleaner Prod.
,
200
, pp.
552
567
. 10.1016/j.jclepro.2018.07.266
25.
Alimoradi
,
A.
,
2017
, “
Investigation of Exergy Efficiency in Shell and Helically Coiled Tube Heat Exchangers
,”
Case Studies Therm. Eng.
,
10
, pp.
1
8
. 10.1016/j.csite.2016.12.005
26.
Turkevich
,
J.
,
Stevenson
,
P. C.
, and
Hillier
,
J.
,
1951
, “
A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold
,”
Discussions Faraday Soc.
,
11
, pp.
55
75
. 10.1039/df9511100055
27.
Kim
,
H. J.
,
Bang
,
I. C.
, and
Onoe
,
J.
,
2009
, “
Characteristic Stability of Bare Au-Water Nanofluids Fabricated by Pulsed Laser Ablation in Liquids
,”
Opt. Lasers Eng.
,
47
(
5
), pp.
532
538
. 10.1016/j.optlaseng.2008.10.011
28.
Babu
,
J. A. R.
,
Kumar
,
K. K.
, and
Rao
,
S. S.
,
2017
, “
State-of-Art Review on Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
551
565
. 10.1016/j.rser.2017.04.040
29.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
. 10.1007/s11051-004-3170-5
30.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2016
, “
Single-Phase and Two-Phase Treatments of Convective Heat Transfer Enhancement With Nanofluids—A State-of-the-Art Review
,”
Int. J. Therm. Sci.
,
100
, pp.
75
97
. 10.1016/j.ijthermalsci.2015.09.021
31.
Corcione
,
M.
,
2016
, “
Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1536
1546
. 10.1016/j.ijthermalsci.2010.05.005
32.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Experimental Heat Transfer
,
11
(
2
), pp.
151
70
. 10.1080/08916159808946559
33.
Ferreira
,
T. P. A.
,
Fogaça
,
M. B.
,
Lenart
,
V. M.
,
Behainne
,
J. J. R.
,
Gómez
,
S. L.
, and
Turchiello
,
R. F.
,
2017
, “
Design and Construction of a Heat Exchanger: Use of Nanofluids (Gold Nanoparticles in Base Fluid)
,”
Proceedings of 24th ABCM International Congress of Mechanical Engineering
,
Curitiba, Paraná, Brazil
, pp.
1
9
.
34.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
Hoboken
.
35.
Pourhoseini
,
S. H.
,
Naghizadeh
,
N.
, and
Hoseinzadeh
,
H.
,
2018
, “
Effect of Silver-Water Nanofluid on Heat Transfer Performance of a Plate Heat Exchanger: An Experimental and Theoretical Study
,”
Powder Technol.
,
332
, pp.
279
286
. 10.1016/j.powtec.2018.03.058
36.
Elshazly
,
K. M.
,
Sakr
,
R. Y.
,
Ali
,
R. K.
, and
Salem
,
M. R.
,
2017
, “
Effect of γ-Al2O3/Water Nanofluid on the Thermal Performance of Shell and Coil Heat Exchanger With Different Coil Torsions
,”
Heat Mass Transfer
,
53
(
6
), pp.
1893
1903
. 10.1007/s00231-016-1949-4
37.
Kakaç
,
S.
,
Yener
,
Y.
, and
Pramuanjaroenkij
,
A.
,
2013
,
Convective Heat Transfer
, 3rd ed.,
CRC Press
,
Boca Raton
.
38.
Godson
,
L.
,
Deepak
,
K.
,
Enoch
,
C.
,
Jefferson
,
B.
, and
Raja
,
B.
,
2014
, “
Heat Transfer Characteristics of Silver/Water Nanofluids in a Shell and Tube Heat Exchanger
,”
Archives Civil Mech. Eng.
,
14
(
3
), pp.
489
496
. 10.1016/j.acme.2013.08.002
39.
Pourahmad
,
S.
, and
Pesteei
,
S. M.
,
2016
, “
Effectiveness-NTU Analyses in a Double Tube Heat Exchanger Equipped With Wavy Strip Considering Various Angles
,”
Energy Convers. Manage.
,
123
, pp.
462
469
. 10.1016/j.enconman.2016.06.063
40.
Ho
,
C. J.
,
Hsieh
,
Y. J.
,
Rashidi
,
S.
,
Orooji
,
Y.
, and
Yan
,
W. M.
,
2020
, “
Thermal-Hydraulic Analysis for Alumina/Water Nanofluid Inside a Mini-Channel Heat Sink With Latent Heat Cooling Ceiling—An Experimental Study
,”
Int. Commun. Heat Mass Transfer
,
112
, pp.
1
13
. 10.1016/j.icheatmasstransfer.2020.104477
41.
Ravisankar
,
R.
,
Venkatachalapathy
,
V. S. K.
, and
Alagumurthi
,
N.
,
2017
, “
Metal and Oxide Form of Nanoparticles Heat Transfer in Radiator: A Review
,”
Int. J. Research Adv. Eng. Technol.
,
3
(
1
), pp.
1
6
.
42.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2007
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid. Sci.
,
31
(
6
), pp.
593
599
. 10.1016/j.expthermflusci.2006.06.009
43.
Taylor
,
R.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
(
1
), pp.
1
19
. 10.1063/1.4754271
44.
Chakraborty
,
S.
, and
Panigrahi
,
P. K.
,
2020
, “
Stability of Nanofluid: A Review
,”
Appl. Therm. Eng.
,
174
, pp.
1
26
. 10.1016/j.applthermaleng.2020.115259
45.
Torki
,
M.
, and
Etesami
,
N.
,
2019
, “
Experimental Investigation of Natural Convection Heat Transfer of SiO2/Water Nanofluid Inside Inclined Enclosure
,”
J. Therm. Anal. Calorim.
,
139
(
2
), pp.
1565
1574
. 10.1007/s10973-019-08445-9
46.
Ali
,
H. M.
,
2020
, “
In Tube Convection Heat Transfer Enhancement: SiO2 Aqua Based Nanofluids
,”
J. Mol. Liq.
,
308
, pp.
1
8
. 10.1016/j.molliq.2020.113031
47.
Karimi
,
Y.
,
Nazar
,
A. R. S.
, and
Motevasel
,
M.
,
2020
, “
CFD Simulation of Nanofluid Heat Transfer Considering the Aggregation of Nanoparticles in Population Balance Model
,”
J. Therm. Anal. Calorim.
, pp.
1
14
. 10.1007/s10973-019-09218-0
48.
Amini
,
F.
,
Miry
,
S. Z.
,
Karimi
,
A.
, and
Ashjaee
,
M.
,
2019
, “
Experimental Investigation of Thermal Conductivity and Viscosity of SiO2/Multiwalled Carbon Nanotube Hybrid Nanofluids
,”
J. Nanosci. Nanotechnol.
,
19
(
6
), pp.
3398
3407
. 10.1166/jnn.2019.16127
49.
Khodadadi
,
H.
,
Toghraie
,
D.
, and
Karimipour
,
A.
,
2019
, “
Effects of Nanoparticles to Present a Statistical Model for the Viscosity of MgO-Water Nanofluid
,”
Powder Technol.
,
342
, pp.
166
180
. 10.1016/j.powtec.2018.09.076
50.
Lu
,
G.
,
Duan
,
Y. Y.
, and
Wang
,
X. D.
,
2014
, “
Surface Tension, Viscosity, and Rheology of Water-Based Nanofluids: A Microscopic Interpretation on the Molecular Level
,”
J. Nanopart. Res.
,
16
(
9
), pp.
1
11
. 10.1007/s11051-014-2564-2
51.
Ali
,
M.
,
El-Leathy
,
A. M.
, and
Al-Sofyany
,
Z.
,
2014
, “
The Effect of Nanofluid Concentration on the Cooling System of Vehicles Radiator
,”
Adv. Mech. Eng.
,
6
, pp.
1
13
. 10.1155/2014/962510
52.
Sarafraz
,
M. M.
,
Hormozi
,
F.
, and
Nikkhah
,
V.
,
2016
, “
Thermal Performance of a Countercurrent Double Pipe Heat Exchanger Working With COOH-CNT/Water Nanofluids
,”
Exp. Therm. Fluid. Sci.
,
78
, pp.
41
49
. 10.1016/j.expthermflusci.2016.05.014
53.
Goodarzi
,
M.
,
Kherbeet
,
A. S.
,
Afrand
,
M.
,
Sadeghinezhad
,
E.
,
Mehrali
,
M.
,
Zahedi
,
P.
,
Wongwises
,
S.
, and
Dahari
,
M.
,
2016
, “
Investigation of Heat Transfer Performance and Friction Factor of a Counter-Flow Double-Pipe Heat Exchanger Using Nitrogen-Doped, Graphene-Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
16
23
. 10.1016/j.icheatmasstransfer.2016.05.018
54.
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Sabri
,
M. F. M.
,
2016
, “
Experimental Investigation on Al2O3-W, SiO2-W and ZnO-W Nanofluids and Their Application in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
97
, pp.
547
558
. 10.1016/j.ijheatmasstransfer.2016.02.016
55.
El-Maghlany
,
W. M.
,
Hanafy
,
A. A.
,
Hassan
,
A. A.
, and
Elmagid
,
M. A.
,
2016
, “
Experimental Study of Cu-Water Nanofluid Heat Transfer and Pressure Drop in a Horizontal Double-Tube Heat Exchanger
,”
Exp. Therm. Fluid. Sci.
,
78
, pp.
100
111
. 10.1016/j.expthermflusci.2016.05.015
56.
Abdelhafez
,
S. E.
,
Abo-Zahhad
,
E. M.
,
El-Shazly
,
A. H.
, and
El-Kady
,
M. F.
,
2017
, “
Experimental Investigate of Heat Transfer for Graphene/Water Nanofluid in Micro Heat Exchanger
,”
AIP Conf. Proc.
,
1814
. 10.1063/1.4976233
57.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2018
, “
Discrete Phase Numerical Model and Experimental Study of Hybrid Nanofluid Heat Transfer and Pressure Drop in Plate Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
262
273
. 10.1016/j.icheatmasstransfer.2017.12.020
58.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2931
2933
. 10.1063/1.1602578
You do not currently have access to this content.