Abstract

Steady-state and transient behaviors of single-phase natural circulation loop (SPNCL) are investigated using four thermal oils (Therminol VP1, Paratherm CR, Dowtherm A, and Dowtherm Q) and water-based ternary hybrid (various combinations of different nature and shaped nanoparticles: Al2O3, Cu, carbon nanotube (CNT) and graphene) nanofluids as loop fluid. The influences of nanoparticle volume concentration and loop height-to-width ratio on the mass flow rate and total entropy generation rate of SPNCL are investigated. Results disclose that ternary hybrid nanofluids enhance flow initiation, reduce fluctuation and are expected to attain a steady-state faster than water. Steady-state mass flow rate increases/decreases for ternary hybrid nanofluid depending on the shape of the nanoparticle, and the total entropy generation rate decreases as compared to water. Thermal oil shows a higher mass flow rate and total entropy generation rate as compared to water. Al2O3–Cu–CNT–water and Paratherm CR show the best result among all ternary hybrid nanofluids and thermal oils, respectively. The nanoparticle shape decides the optimum nanoparticle volume fraction. Increasing the height-to-width ratio decreases the total entropy generation and upsurges the mass flow rate at specified input power. The optimum height-to-width ratio depends on the loop fluid.

References

1.
Welander
,
P.
,
1967
, “
On the Oscillatory Behaviour of a Differentially Heated Fluid Loop—Welander
,”
J. Fluid Mech.
,
29
(
1
), pp.
17
30
. 10.1017/S0022112067000606
2.
Creveling
,
H. F.
,
De Paz
,
F. Z.
,
Baladi
,
J. Y.
, and
Schoenhals
,
J.
,
1975
, “
Stability Characteristics of a Single-Phase Free Convection Loop
,”
J. Fluid Mech.
,
67
(
1
), pp.
65
84
. 10.1017/S0022112075000171
3.
Chen
,
K.
,
1985
, “
On the Oscillatory Instability of Closed Loop Thermosyphons
,”
J. Heat Transfer
,
107
(
4
), pp.
826
831
. 10.1115/1.3247510
4.
Vijayan
,
P. K.
,
Bhojwani
,
V. K.
,
Bade
,
M. H.
,
Sharma
,
M.
,
Nayak
,
A. K.
,
Saha
,
D.
, and
Sinha
,
R. K.
,
2001
, “Investigation on the Effect of Heater and Cooler Orientation on the Steady State, Transient and Stability Behaviour of Single-Phase Natural Circulation in a Rectangular Loop,” BARC/2001/E/034.
5.
Garibaldi
,
P.
, and
Misale
,
M.
,
2008
, “
Experiments in Single-Phase Natural Circulation Mini Loops With Different Working Fluids and Geometries
,”
J. Heat Transfer
,
130
(
10
), p.
104506
. 10.1115/1.2948393
6.
Yadav
,
A. K.
,
Bhattacharyya
,
S.
, and
Ramgopal
,
M.
,
2016
, “
Optimum Operating Conditions for Subcritical/Supercritical Fluid-Based Natural Circulation Loops
,”
ASME J. Heat Transfer
,
138
(
11
), p.
112501
. 10.1115/1.4031921
7.
Basu
,
D. N.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2013
, “
Dynamic Response of a Single Phase Rectangular Natural Circulation Loop to Different Excitations of Input Power
,”
Int. J. Heat Mass Transfer
,
65
, pp.
131
142
. 10.1016/j.ijheatmasstransfer.2013.06.006
8.
Srivastava
,
A. K.
,
Kudariyawar
,
J. Y.
,
Borgohain
,
A.
,
Jana
,
S. S.
,
Maheshwari
,
N. K.
, and
Vijayan
,
P. K.
,
2016
, “
Experimental and Theoretical Studies on the Natural Circulation Behavior of Molten Salt Loop
,”
Appl. Therm. Eng.
,
98
, pp.
513
521
. 10.1016/j.applthermaleng.2015.12.065
9.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2008
, “
An Experimental Investigation of Single-Phase Natural Circulation Behaviour in a Rectangular Loop With Al2O3 Nanofluids
,”
Exp. Therm. Fluid. Sci.
,
33
(
1
), pp.
184
189
. 10.1016/j.expthermflusci.2008.07.017
10.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2009
, “
Nanofluids: A Novel Promising Flow Stabilizer in Natural Circulation Systems
,”
Am. Inst. Chem. Eng.
,
55
(
1
), pp.
268
274
. 10.1002/aic.11659
11.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2009
, “
Thermal–Hydraulic Characteristics of a Single-Phase Natural Circulation Loop With Water and Al2O3 Nanofluid
,”
Nucl. Eng. Des.
,
239
(
3
), pp.
526
540
. 10.1016/j.nucengdes.2008.11.014
12.
Misale
,
M.
,
Devia
,
F.
, and
Garibaldi
,
P.
,
2012
, “
Experiments With Al2O3 Nanofluid in a Single-Phase Natural Circulation Mini-Loop: Preliminary Results
,”
Appl. Therm. Eng.
,
40
, pp.
64
70
. 10.1016/j.applthermaleng.2012.01.053
13.
Dogana
,
S.
, and
Turgut
,
A.
,
2015
, “
Enhanced Effectiveness of Nanofluid Based Natural Circulation Mini Loop
,”
Appl. Therm. Eng.
,
75
, pp.
669
676
. 10.1016/j.applthermaleng.2014.10.083
14.
Koca
,
H. D.
,
Doganay
,
S.
, and
Turgut
,
A.
,
2017
, “
Thermal Characteristics and Performance of Ag-Water Nanofluid: Application to Natural Circulation Loops
,”
Energy Convers. Manage.
,
135
, pp.
9
20
. 10.1016/j.enconman.2016.12.058
15.
Devi
,
P.
,
Rao
,
C. S.
, and
Kumar
,
K.
,
2018
, “
Suitability of Magnetic Nanofluid in Heat Transfer Loops
,”
Int. J. Heat Technol.
,
36
(
1
), pp.
195
200
. 10.18280/ijht.360126
16.
Thomas
,
S.
, and
Sobhan
,
C. B.
,
2017
, “
Stability and Transient Performance of Vertical Heater Vertical Cooler Natural Circulation Loops With Metal Oxide Nanoparticle Suspensions
,”
Heat Transfer Eng.
,
39
(
10
), pp.
861
873
. 10.1080/01457632.2017.1338859
17.
Sahu
,
M.
, and
Sarkar
,
J.
,
2019
, “
Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop With Hybrid Nanofluids
,”
J. Heat Transfer
,
141
(
8
), p.
082401
. 10.1115/1.4043819
18.
Sahu
,
M.
,
Sarkar
,
J.
, and
Chandra
,
L.
,
2020
, “
Transient Thermo-Hydraulics and Performance Characteristics of Single-Phase Natural Circulation Loop Using Hybrid-Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104433
. 10.1016/j.icheatmasstransfer.2019.104433
19.
Tlili
,
I.
,
Seyyedi
,
S. M.
,
Dogonchi
,
A. S.
,
Tilehnoee
,
M. H.
, and
Ganji
,
D. D.
,
2020
, “
Analysis of a Single-Phase Natural Circulation Loop With Hybrid-Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
112
, p.
104498
. 10.1016/j.icheatmasstransfer.2020.104498
20.
Vijayan
,
P. K.
,
Bade
,
M. H.
,
Saha
,
D.
,
Sinha
,
R. K.
, and
Raj
,
V. V.
,
2000
, “Generalised Correlation for the Steady State Flow in Single-Phase Natural Circulation Loops,” BARC/2000/E/021.
21.
Swapnalee
,
B. T.
, and
Vijayan
,
P. K.
,
2011
, “
A Generalized Flow Equation for Single Phase Natural Circulation Loops Obeying Multiple Friction Laws
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2618
2629
. 10.1016/j.ijheatmasstransfer.2011.01.023
22.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
23.
Moraveji
,
M. K.
,
Darabi
,
M.
,
Haddad
,
S. M. H.
, and
Dabvaranejad
,
R.
,
2011
, “
Modelling of Convective Heat Transfer of a Nanofluid in the Developing Region of a Tube Flow With Computational Fluid Dyanamics
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1291
1295
. 10.1016/j.icheatmasstransfer.2011.06.011
24.
Vijjaha
,
R. S.
, and
Das
,
D. K.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluid
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
. 10.1016/j.ijheatmasstransfer.2010.06.032
25.
Ogut
,
E. B.
,
2009
, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2063
2073
. 10.1016/j.ijthermalsci.2009.03.014
26.
Devarajan
,
M.
,
Krishnamurthy
,
N. P.
,
Balasubramanian
,
M.
,
Ramani
,
B.
,
Wongwises
,
S.
,
El-Naby
,
K. A.
, and
Sathyamurthy
,
R.
,
2018
, “
Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid
,”
Micro Nano Lett.
,
13
(
5
), pp.
617
621
. 10.1049/mnl.2017.0029
27.
Deng
,
L.
,
Young
,
R. J.
,
Kinloch
,
I. A.
,
Sun
,
R.
,
Zhang
,
G.
,
Noe
,
L.
, and
Monthioux
,
M.
,
2014
, “
Coefficient of Thermal Expansion of Carbon Nanotubes Measured by Raman Spectroscopy
,”
Appl. Phys. Lett.
,
104
(
5
), p.
051901
. 10.1063/1.4863856
28.
Yoon
,
D.
,
Son
,
Y. W.
, and
Cheong
,
H.
,
2011
, “
Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy
,”
Nano Lett.
,
11
(
8
), pp.
3227
3231
. 10.1021/nl201488g
29.
Ahammed
,
N.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2016
, “
Entropy Generation Analysis of Graphene–Alumina Hybrid Nanofluids in Multiport Mini Channel Heat Exchanger Coupled With Thermoelectric Cooler
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1084
1097
. 10.1016/j.ijheatmasstransfer.2016.07.070
30.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semi Circular Cavity
,”
J. Therm. Sci. Eng. Appl.
,
9
(
4
), pp.
1
9
. 10.1115/1.4036203
31.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
. 10.1063/1.3155999
32.
Klein
,
S. A.
,
2017
, Engineering Equation Solver Professional, Version V10.215, F-Chart Software, Madison, WI.
33.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
34.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2015
, “
Particle Concentration Levels of Various Nanofluids in Plate Heat Exchanger for Best Performance
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1110
1118
. 10.1016/j.ijheatmasstransfer.2015.05.118
You do not currently have access to this content.