Abstract
This study aims at developing a numerical model that can be employed for simulating the thermomechanical treatment to develop the advanced high strength steels. The developed numerical method is used to calculate the heat transfer coefficient of the quenching medium during the continuous cooling of the steel using the inverse heat transfer model for predefined cooling paths. Further, the phase transformation models are used to predict the final microstructure of the steel plate. The cooling rate, plate thickness, and rolling speed are varied to evaluate the temperature and microstructure distribution in the steel plate. It is found that on increasing the quenching time, the transformation fraction from austenite to ferrite and bainite phases increases and the corresponding martensite fraction decreases. The temperature variation in the plate is significant due to the change in plate thickness and rolling speed for a given quenching time. The present model will be useful for designing process parameters to obtain desired microstructures in third-generation advanced high strength steels.