Abstract

In this study, the impact of thermal radiation and partial slip on magnetohydrodynamic flow of the Jeffrey nanofluid comprising motile gyrotactic microorganisms via vertical stretching surface is analyzed. The governing partial differential equations are reformed to a system of coupled ordinary differential equations by utilizing the similarity transformations. The transformed equations are of order four, which are complex to solve analytically and hence, the coupled system is solved computationally by using the shooting technique along the Runge–Kutta integrated scheme. The ramifications of different thermophysical parameters on the density of gyrotactic microorganisms, Jeffrey nanofluid velocity, nanoparticles concentration, temperature, Sherwood number, and Nusselt number are illustrated graphically. Comparing this study with the results already published favors the validity of this study. It is established that the Nusselt number is boosted on enhancing the thermal radiation parameter, and the reverse trend has been observed on increasing the Richardson number, whereas the gyrotactic microorganisms density is more in case of viscous nanofluid compared to the Jeffrey nanofluid.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
, pp.
99
105
.
2.
Gorla
,
R. S. R.
, and
Chamkha
,
A. J.
,
2011
, “
Natural Convective Boundary Layer Flow Over a Non-Isothermal Vertical Plate Embedded in a Porous Medium Saturated With a Nanofluid
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
2
), pp.
81
94
. 10.1080/15567265.2010.549931
3.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
,
Prasannakumara
,
B. C.
, and
Sampathkumar
,
P. B.
,
2017
, “
Magneto-Thermo-Marangoni Convective Flow of Cu-H2O Nanoliquid Past an Infinite Disk With Particle Shape and Exponential Space Based Heat Source Effects
,”
Results Phys.
,
7
, pp.
2990
2996
. 10.1016/j.rinp.2017.08.016
4.
Bazdar
,
H.
,
Toghraie
,
D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
,
Nguyen
,
H. M.
, and
Asadi
,
A.
,
2019
, “
Numerical Investigation of Turbulent Flow and Heat Transfer of Nanofluid Inside a Wavy Microchannel With Different Wavelengths
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
2365
2380
. 10.1007/s10973-019-08637-3
5.
Akbar
,
N. S.
,
Nadeem
,
S.
,
Rizwan
,
U. H.
, and
Khan
,
Z. H.
,
2013
, “
Radiation Effects on MHD Stagnation Point Flow of Nano Fluid Towards a Stretching Surface With Convective Boundary Condition
,”
Chin. J. Aeronaut.
,
26
(
6
), pp.
1389
1397
. 10.1016/j.cja.2013.10.008
6.
Ghalambaz
,
M.
,
Behseresht
,
A.
,
Behseresht
,
J.
, and
Chamkha
,
A. J.
,
2015
, “
Effects of Nanoparticles Diameter and Concentration on Natural Convection of the Al2O3–Water Nanofluids Considering Variable Thermal Conductivity Around a Vertical Cone in Porous Media
,”
Adv. Powder Technol.
,
26
(
1
), pp.
224
235
. 10.1016/j.apt.2014.10.001
7.
Reddy
,
P. S.
,
Sreedevi
,
P.
, and
Chamkha
,
A. J.
,
2017
, “
MHD Boundary Layer Flow, Heat and Mass Transfer Analysis Over a Rotating Disk Through Porous Medium Saturated by Cu-Water and Ag-Water Nanofluid With Chemical Reaction
,”
Powder Technol.
,
307
, pp.
46
55
. 10.1016/j.powtec.2016.11.017
8.
Jain
,
S.
,
Kumari
,
M.
, and
Parmar
,
A.
,
2018
, “
Unsteady MHD Chemically Reacting Mixed Convection Nano-Fluids Flow Past an Inclined Pours Stretching Sheet With Slip Effect and Variable Thermal Radiation and Heat Source
,”
Mater. Today Proc.
,
5
(
2
), pp.
6297
6312
. 10.1016/j.matpr.2017.12.239
9.
Tarakaramu
,
N.
,
Satya Narayana
,
P. V.
, and
Venkateswarlu
,
B.
,
2020
, “
Numerical Simulation of Variable Thermal Conductivity on 3D Flow of Nanofluid Over a Stretching Sheet
,”
Nonlinear Eng.
,
9
(
1
), pp.
233
243
. 10.1515/nleng-2020-0011
10.
Kuznetsov
,
A. V.
, and
Avramenko
,
A. A.
,
2004
, “
Effect of Small Particles on the Stability of Bioconvection in a Suspension of Gyrotactic Microorganisms in a Layer of Finite Depth
,”
Int. Commun. Heat Mass Transfer
,
31
(
1
), pp.
1
10
. 10.1016/S0735-1933(03)00196-9
11.
Khan
,
W. A.
,
Makinde
,
O. D.
, and
Khan
,
Z. H.
,
2014
, “
MHD Boundary Layer Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Plate With Navier Slip
,”
Int. J. Heat Mass Transfer
,
74
, pp.
285
291
. 10.1016/j.ijheatmasstransfer.2014.03.026
12.
Chamkha
,
A. J.
,
Rashad
,
A. M.
,
Kameswaran
,
P. K.
, and
Abdou
,
M. M. M.
,
2017
, “
Radiation Effects on Natural Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Plate With Stream Wise Temperature Variation
,”
J. Nanofluids
,
6
(
3
), pp.
587
595
. 10.1166/jon.2017.1351
13.
Sudhagar
,
P.
,
Kameswaran
,
P. K.
, and
Rushi Kumar
,
B.
,
2019
, “
Gyrotactic Microorganism Effects on Mixed Convective Nanofluid Flow Past a Vertical Cylinder
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(4), p.
041018
. 10.1115/1.4044185
14.
Rashad
,
A. M.
,
Chamkha
,
A. J.
, and
Abdou
,
M. M. M.
,
2013
, “
Mixed Convection Flow of Non-Newtonian Fluid From Vertical Surface Saturated in a Porous Medium Filled With a Nanofluid
,”
J. Appl. Fluid Mech.
,
6
(
2
), pp.
301
309
.
15.
Khan
,
W. A.
,
Rashad
,
A. M.
,
Abdou
,
M. M. M.
, and
Tlili
,
I.
,
2019
, “
Natural Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms About a Truncated Cone
,”
J. Theor. Appl. Mech.
,
75
, pp.
133
142
. 10.1016/j.euromechflu.2019.01.002
16.
Ferdows
,
M.
,
Zaimi
,
K.
,
Rashad
,
A. M.
, and
Nabwey
,
H. A.
,
2020
, “
MHD Bioconvection Flow and Heat Transfer of Nanofluid Through an Exponentially Stretchable Sheet
,”
Symmetry
,
12
(
5
), p.
692
. 10.3390/sym12050692
17.
Pal
,
D.
, and
Mondal
,
S. K.
,
2017
, “
MHD Nanofluid Bioconvection Over an Exponentially Stretching Sheet in the Presence of Gyrotactic Microorganisms and Thermal Radiation
,”
BioNanoScience
,
8
(
1
), pp.
272
287
. 10.1007/s12668-017-0474-3
18.
Rashad
,
A. M.
,
Chamkha
,
A. J.
,
Mallikarjuna
,
B.
, and
Abdou
,
M. M. M.
,
2018
, “
Mixed Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Slender Cylinder
,”
Front. Heat Mass Transfer
,
10
, p.
21
.
19.
Nayak
,
M. K.
,
Prakash
,
J.
,
Tripathi
,
D.
,
Pandey
,
V. S.
,
Shaw
,
S.
, and
Makinde
,
O. D.
,
2020
, “
3D Bioconvective Multiple Slip Flow of Chemically Reactive Casson Nanofluid With Gyrotactic Micro-Organisms
,”
Heat Transfer Asian Res.
,
49
(
1
), pp.
135
153
. 10.1002/htj.21603
20.
Chamkha
,
A. J.
,
Mohamed
,
R. A.
, and
Ahmed
,
S. E.
,
2011
, “
Unsteady MHD Natural Convection From a Heated Vertical Porous Plate in a Micropolar Fluid With Joule Heating, Chemical Reaction and Radiation Effects
,”
Meccanica
,
46
(
2
), pp.
399
411
. 10.1007/s11012-010-9321-0
21.
Yang
,
W.
,
Chen
,
X.
,
Zhang
,
X.
,
Zheng
,
L.
, and
Liu
,
F.
,
2019
, “
Flow and Heat Transfer of Double Fractional Maxwell Fluids Over a Stretching Sheet With Variable Thickness
,”
Appl. Math. Model.
,
80
, pp.
204
216
. 10.1016/j.apm.2019.11.017
22.
Rasool
,
G.
,
Zhang
,
T.
,
Chamkha
,
A. J.
,
Shafiq
,
A.
,
Tlili
,
I.
, and
Shahzadi
,
G.
,
2020
, “
Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface
,”
Entropy
,
22
(
1
), p.
18
. 10.3390/e22010018
23.
Waqas
,
H.
,
Imran
,
M.
,
Muhammad
,
T.
,
Sait
,
S. M.
, and
Ellahi
,
R.
,
2020
, “
Numerical Investigation on Bioconvection Flow of Oldroyd-B Nanofluid With Nonlinear Thermal Radiation and Motile Microorganisms Over Rotating Disk
,”
J. Therm. Anal. Calorim
, pp.
1
17
. 10.1007/s10973-020-09728-2
24.
Hayat
,
T.
,
Ijaz Khan
,
M.
,
Imtiaz
,
M.
, and
Alsaedi
,
A.
,
2017
, “
Heat and Mass Transfer Analysis in the Stagnation Region of Maxwell Fluid With Chemical Reaction Over a Stretched Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011002
. 10.1115/1.4036768
25.
Oyelakin
,
I. S.
,
Mondal
,
S.
,
Sibanda
,
P.
, and
Sibanda
,
D.
,
2019
, “
Bioconvection in Casson Nanofluid Flow With Gyrotactic Micro-Organisms and Variable Surface Heat Flux
,”
Int. J. Biomath.
,
12
(
4
), pp.
1
25
. 10.1142/S1793524519500414
26.
Shehzad
,
S. A.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2015
, “
MHD Flow of Jeffrey Nanofluid With Convective Boundary Conditions
,”
J Braz. Soc. Mech. Sci. Eng.
,
37
(
3
), pp.
873
883
. 10.1007/s40430-014-0222-3
27.
Riaz
,
A.
,
Zeeshan
,
A.
,
Bhatti
,
M. M.
, and
Ellahi
,
R.
,
2019
, “
Peristaltic Propulsion of Jeffrey Nano-Liquid and Heat Transfer Through a Symmetrical Duct With Moving Walls in a Porous Medium
,”
Phys. A
,
545
, p.
123788
. 10.1016/j.physa.2019.123788
28.
Raju
,
A.
, and
Ojjela
,
O.
,
2019
, “
Effects of the Induced Magnetic Field, Thermophoresis, and Brownian Motion on Mixed Convective Jeffrey Nanofluid Flow Through a Porous Channel
,”
Eng. Rep.
,
1
(
4
), pp.
1
18
. 10.1002/eng2.12053
29.
Satya Narayana
,
P. V.
, and
Harish Babu
,
D.
,
2016
, “
Numerical Study of MHD Heat and Mass Transfer of a Jeffrey Fluid Over a Stretching Sheet With Chemical Reaction and Thermal Radiation
,”
J. Taiwan Inst. Chem. Eng.
,
59
, pp.
18
25
. 10.1016/j.jtice.2015.07.014
30.
Sreenadh
,
S.
,
Rashidi
,
M. M.
,
Kumara Swamy Naidu
,
K.
, and
Parandhama
,
A.
,
2016
, “
Free Convection Flow of a Jeffrey Fluid Through a Vertical Deformable Porous Stratum
,”
J. Appl. Fluid Mech.
,
9
(
5
), pp.
2391
2401
.
31.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Review of Nanofluids: Science and Technology
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, p.
397
.
32.
Nadeem
,
S.
,
Haq
,
R. U.
, and
Khan
,
Z. H.
,
2014
, “
Heat Transfer Analysis of Water-Based Nanofluid Over an Exponentially Stretching Sheet
,”
Alexandria Eng. J.
,
53
(
1
), pp.
219
224
. 10.1016/j.aej.2013.11.003
33.
Das
,
S.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
,
2016
, “
Transient Natural Convection in a Vertical Channel Filled With Nanofluids in the Presence of Thermal Radiation
,”
Alexandria Eng. J.
,
55
(
1
), pp.
253
262
. 10.1016/j.aej.2015.10.013
34.
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2020
, “
Cu-Al2O3/H2O Hybrid Nanofluid Flow Past a Porous Stretching Sheet Due to Temperature-Dependent Viscosity and Viscous Dissipation
,”
Heat Transfer
, pp.
1
18
. 10.1002/htj.21884
35.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transer
,
128
(
3
), pp.
241
250
. 10.1115/1.2150834
36.
Dulal
,
P.
, and
Gopinath
,
M.
,
2010
, “
Heat and Mass Transfer of a Non-Newtonian Jeffrey Nanofluid Over an Extrusion Stretching Sheet With Thermal Radiation and Non-Uniform Heat Source/Sink
,”
Comput. Therm. Sci. An Int. J.
,
12
(
2
), pp.
163
178
.
37.
Babu
,
D. H.
,
Ajmath
,
K. A.
,
Venkateswarlu
,
B.
, and
Satya Narayana
,
P. V.
,
2019
, “
Thermal Radiation and Heat Source Effects on MHD Non-Newtonian Nanofluid Flow Over a Stretching Sheet
,”
J. Nanofluids
,
8
(
5
), pp.
1085
1092
. 10.1166/jon.2019.1666
38.
Hayat
,
T.
,
Kanwal
,
M.
, and
Qayyum
,
S.
,
2020
, “
Entropy Generation Optimization of MHD Jeffrey Nanofluid Past a Stretchable Sheet With Activation Energy and Non-Linear Thermal Radiation
,”
Phys. A
,
544
, pp.
1
23
.
39.
Ibrahim
,
W.
, and
Negera
,
M.
,
2020
, “
MHD Slip Flow of Upper-Convected Maxwell Nanofluid Over a Stretching Sheet With Chemical Reaction
,”
J. Egypt. Math. Soc.
,
7
(
28
), pp.
1
28
.
40.
Rosseland
,
S.
,
1931
,
Astrophysik auf Atom-Theoretischer Grundlage
,
Verlag von Julius Springer
,
Berlin
, pp.
41
44
.
41.
Anwar
,
S.
,
Hulin
,
H.
,
Bhatti
,
M. M.
,
Zhang
,
L.
, and
Ellahi
,
R.
,
2020
, “
Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids Through Porous Medium Over a Stretched Surface
,”
Mathematics
,
8
(
380
), pp.
11
18
.
42.
Na
,
T. Y.
,
1979
,
Computational Method in Engineering Boundary Value Problems
,
Academic Press
,
New York
.
43.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2477
2483
. 10.1016/j.ijheatmasstransfer.2010.01.032
44.
Wang
,
C. Y.
,
1989
, “
Free Convection on a Vertical Stretching Surface
,”
J. Appl. Math. Mech.
,
69
(
11
), pp.
418
420
. 10.1002/zamm.19890691115
45.
Akbar
,
N. S.
, and
Khan
,
Z. H.
,
2016
, “
Magnetic Field Analysis in a Suspension of Gyrotactic Microorganisms and Nanoparticles Over a Stretching Surface
,”
J. Magn. Magn. Mater.
,
410
, pp.
72
80
. 10.1016/j.jmmm.2016.02.075
You do not currently have access to this content.