Abstract

The present investigation deals with the flow dynamics and heat transport of the nanofluid flow over a rotating disk. The flow is considered to be laminar and steady. Active–passive controls of tiny nanoparticles influenced by the Brownian motion and thermophoretic migration are included to reveal the variations in the hydrothermal behaviour. Thermal radiation, velocity slip, and thermal slip are also introduced to model the flow. The foremost governing equations are converted into its dimensionless form after applying the requisite similarity transformation. The spectral quasi-linearization method (SQLM) has been employed to extract the numeric outcomes of the flow. Effects of the underlying parameters on the flow and heat-mass transport are revealed through graphs and tables. Several three-dimensional (3D) and streamlines plots are depicted to enrich the Result and Discussion section. Results assured that the velocities in every direction reduce for velocity slip parameter and magnetic parameter. Temperature increases for thermophoresis and Brownian motion, but reduces for velocity and thermal slip parameter. Active flow reveals high temperature than passive flow. The Brownian motion and thermophoresis provide dual scenario for concentration profile. Heat and mass transport always sustain high magnitude for passive flow.

References

1.
Choi
,
S. U. S.
,
1995
, “Enhancing Thermal Conductivity of Fluids Wwith Nanoparticles,”
Non-new Flows
, FED 231,
D. A.
Siginer
, and
H.P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
2.
Valenzuela
,
J.
,
Jasinski
,
T.
, and
Sheikh
,
Z.
,
2005
, “
Liquid Cooling for High Power Electronics
,”
Power Electron. Technol.
3.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. F.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
. 10.1080/01457630600904593
4.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
. 10.1016/j.renene.2011.08.056
5.
Palanisamy
,
K.
, and
Kumar
,
P. C. M.
,
2019
, “
Experimental Investigation on Convective Heat Transfer and Pressure Drop of Cone Helically Coiled Tube Heat Exchanger Using Carbon Nanotubes/Water Nanofluids
,”
Heliyon
,
5
(
5
), p.
e01705
. 10.1016/j.heliyon.2019.e01705
6.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
7.
Freidoonimehr
,
N.
, and
Rahimi
,
A. B.
,
2019
, “
Brownian Motion Effect on Heat Transfer of a Three-Dimensional Nanofluid Flow Over a Stretched Sheet With Velocity Slip
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
207
222
. 10.1007/s10973-018-7060-y
8.
Reddy
,
J. V. R.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2018
, “
Thermophoresis and Brownian Motion Effects on Unsteady MHD Nanofluid Flow Over a Slendering Stretching Surface With Slip Effects
,”
Alexandria Eng. J.
,
57
(
4
), pp.
2465
2473
. 10.1016/j.aej.2017.02.014
9.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2014
, “
Brownian Motion and Thermophoresis Effects on Slip Flow of Alumina/Water Nanofluid Inside a Circular Microchannel in the Presence of a Magnetic Field
,”
Int. J. Therm. Sci.
,
84
, pp.
196
206
. 10.1016/j.ijthermalsci.2014.05.013
10.
Sheikholeslami
,
M.
, and
Rashidi
,
M. M.
,
2016
, “
Non-uniform Magnetic Field Effect on Nanofluid Hydrothermal Treatment Considering Brownian Motion and Thermophoresis Effects
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
4
), pp.
1171
1184
. 10.1007/s40430-015-0459-5
11.
Mabood
,
F.
,
Ibrahim
,
S. M.
, and
Khan
,
W. A.
,
2016
, “
Framing the Features of Brownian Motion and Thermophoresis on Radiative Nanofluid Flow Past a Rotating Stretching Sheet With Magnetohydrodynamics
,”
Results Phys.
,
6
, pp.
1015
1023
. 10.1016/j.rinp.2016.11.046
12.
Acharya
,
N.
,
Maity
,
S.
, and
Kundu
,
P. K.
,
2020
, “
Differential Transformed Approach of Unsteady Chemically Reactive Nanofluid Flow Over a Bidirectional Stretched Surface in Presence of Magnetic Field
,”
Heat Transfer
,
49
(
6
), pp.
3917
3942
. 10.1002/htj.21815
13.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2018
, “
Outlining the Impact of Second-Order Slip and Multiple Convective Condition on Nanofluid Flow: A New Statistical Layout
,”
Can. J. Phys.
,
96
(
1
), pp.
104
111
. 10.1139/cjp-2017-0062
14.
Raju
,
A.
, and
Ojjela
,
O.
,
2019
, “
Effects of the Induced Magnetic Field, Thermophoresis, and Brownian Motion on Mixed Convective Jeffrey Nanofluid Flow Through a Porous Channel
,”
Eng. Rep.
,
1
(
4
), p.
e12053
.
15.
Ashraf
,
K.
,
Siddique
,
I.
, and
Hussain
,
A.
,
2020
, “
Impact of Thermophoresis and Brownian Motion on Non-Newtonian Nanofluid Flow With Viscous Dissipation Near Stagnation Point
,”
Phys. Scr.
,
95
(
5
), p.
055217
. 10.1088/1402-4896/ab72c1
16.
Kumar
,
K. A.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2020
, “
Thermophoresis and Brownian Motion Effects on MHD Micropolar Nanofluid Flow Past a Stretching Surface With Non-uniform Heat Source/Sink
,”
Comput. Therm. Sci.: Int. J.
,
12
(
1
), pp.
55
77
. 10.1615/ComputThermalScien.2020027016
17.
Daniel
,
Y. S.
,
Aziz
,
Z. A.
,
Ismail
,
Z.
, and
Bahar
,
A.
,
2020
, “
Unsteady EMHD Dual Stratified Flow of Nanofluid With Slips Impacts
,”
Alexandria Eng. J.
,
59
(
1
), pp.
177
189
. 10.1016/j.aej.2019.12.020
18.
Herrero
,
J.
,
Humphrey
,
J. A. C.
, and
Giralt
,
F.
,
1994
, “
Comparative Analysis of Coupled Flow and Heat Transfer Between Co-rotating Discs in Rotating and Fixed Cylindrical Enclosures
,”
ASME J. Heat Transfer
,
300
, pp.
111
121
.
19.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disc System, Rotor–Stator System
, Research Studies, Vol.
1
,
Taunton, UK and Wiley, New York
.
20.
Kármán
,
T. V.
,
1921
, “
Über Laminare und Turbulente Reibung
,”
Zeitschrift fur Angew. Math. Mech. ZAMM
,
1
(
4
), pp.
233
252
. 10.1002/zamm.19210010401
21.
Cochran
,
W. G.
,
1934
, “
The Flow due to a Rotating Disk
,”
Math. Proc. Camb. Philos. Soc
,
30
(
3
), pp.
365
375
. 10.1017/S0305004100012561
22.
Stuart
,
J. T.
,
1954
, “
On the Effects of Uniform Suction on the Steady Flow due to a Rotating Disk
,”
Q. J. Mech. Appl. Math
,
7
(
4
), pp.
446
457
. 10.1093/qjmam/7.4.446
23.
Ackroyd
,
J. A. D.
,
1978
, “
On the Steady Flow Produced by a Rotating Disk With Either Surface Suction or Injection
,”
J. Eng. Math.
,
12
(
3
), pp.
207
220
. 10.1007/BF00036459
24.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Flow and Heat Transfer Over a Rotating Porous Disk in Nanofluid
,”
Physica B
,
406
(
9
), pp.
1767
1772
. 10.1016/j.physb.2011.02.024
25.
Rashidi
,
M. M.
,
Pour
,
S. A. M
.,
Hayat
,
T.
, and
Obaidat
,
S.
,
2012
, “
Analytic Approximate Solutions for Steady Flow Over a Rotating Disk in Porous Medium with Heat Transfer by Homotopy Analysis Method
,”
Comput. Fluids
,
54
, pp.
1
9
. 10.1016/j.compfluid.2011.08.001
26.
Turkyilmazoglu
,
M.
,
2012
, “
Effects of Uniform Radial Electric Field on the MHD Heat and Fluid Flow due to a Rotating Disk
,”
Int. J. Eng. Sci.
,
51
, pp.
233
240
. 10.1016/j.ijengsci.2011.09.011
27.
Turkyilmazoglu
,
M.
,
2014
, “
Nanofluid Flow and Heat Transfer due to a Rotating Disk
,”
Comput. Fluids
,
94
, pp.
139
146
. 10.1016/j.compfluid.2014.02.009
28.
Khan
,
J. A.
,
Mustafa
,
M.
,
Hayat
,
T.
,
Turkyilmazoglu
,
M.
, and
Alsaedi
,
A.
,
2017
, “
Numerical Study of Nanofluid Flow and Heat Transfer Over a Rotating Disk Using Buongiorno’s Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
1
), pp.
221
234
. 10.1108/HFF-08-2015-0328
29.
Hayat
,
T.
,
Muhammad
,
T.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2017
, “
On Magnetohydrodynamic Flow of Nanofluid due to a Rotating Disk With Slip Effect: A Numerical Study
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
467
477
. 10.1016/j.cma.2016.11.002
30.
Mustaq
,
A.
, and
Mustafa
,
M.
,
2017
, “
Computations for Nanofluid Flow Near a Stretchable Rotating Disk With Axial Magnetic Field and Convective Conditions
,”
Results Phys.
,
7
, pp.
3137
3144
. 10.1016/j.rinp.2017.08.031
31.
Shah
,
Z.
,
Dawar
,
A.
,
Kumam
,
P.
,
Khan
,
W.
, and
Islam
,
S.
,
2019
, “
Impact of Nonlinear Thermal Radiation on MHD Nanofluid Thin Film Flow Over a Horizontally Rotating Disk
,”
Appl. Sci.
,
9
(
8
), p.
1533
. 10.3390/app9081533
32.
Hosseinzadeh
,
K.
,
Asadi
,
A.
,
Mogharrebi
,
A. R.
,
Khalesi
,
J.
,
Mousavisani
,
M.
, and
Ganji
,
D. D.
,
2019
, “
Entropy Generation Analysis of (CH2OH)2 Containing CNTs Nanofluid Flow Under Effect of MHD and Thermal Radiation
,”
Case Stud. Therm. Eng.
,
14
, p.
100482
. 10.1016/j.csite.2019.100482
33.
Wahed
,
M. A.
, and
Akl
,
M.
,
2016
, “
Effect of Hall Current on MHD Flow of a Nanofluid With Variable Properties due to a Rotating Disk With Viscous Dissipation and Nonlinear Thermal Radiation
,”
AIP Adv.
,
6
(
9
), p.
095308
. 10.1063/1.4962961
34.
Yin
,
C.
,
Zheng
,
L.
,
Zhang
,
C.
, and
Zhang
,
X.
,
2017
, “
Flow and Heat Transfer of Nanofluids Over a Rotating Disk With Uniform Stretching Rate in the Radial Direction
,”
Propul. Power Res.
,
6
(
1
), pp.
25
30
. 10.1016/j.jppr.2017.01.004
35.
Acharya
,
N.
,
Bag
,
R.
, and
Kundu
,
P. K.
,
2019
, “
Influence of Hall Current on Radiative Nanofluid Flow Over a Spinning Disk: A Hybrid Approach
,”
Phys. E: Low dimens. Syst. Nanostruct.
,
111
, pp.
103
112
. 10.1016/j.physe.2019.03.006
36.
Acharya
,
N.
,
Maity
,
S.
, and
Kundu
,
P. K.
,
2019
, “
Framing the Hydrothermal Features of Magnetized TiO2–CoFe2O4 Water-Based Steady Hybrid Nanofluid Flow Over a Radiative Revolving Disk
,”
Multidiscip. Model. Mater. Struct.
,
16
(
4
), pp.
765
790
. 10.1108/MMMS-08-2019-0151
37.
Acharya
,
N.
,
2020
, “
Framing the Impacts of Highly Oscillating Magnetic Field on the Ferrofluid Flow Over a Spinning Disk Considering Nanoparticle Diameter and Solid Liquid Interfacial Layer
,”
ASME J. Heat Transfer
,
142
(
10
), p.
102503
. 10.1115/1.4047503
38.
Acharya
,
N.
,
2020
, “
Spectral Quasi Linearization Simulation of Radiative Nanofluidic Transport Over a Bended Surface Considering the Effects of Multiple Convective Conditions
,”
Eur. J. Mech. B Fluids
,
84
, pp.
139
154
. 10.1016/j.euromechflu.2020.06.004
39.
Acharya
,
N.
, and
Mabood
,
F.
,
2020
, “
On the Hydrothermal Features of Radiative Fe3O4–Graphene Hybrid Nanofluid Flow Over a Slippery Bended Surface With Heat Source/Sink
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09850-1
40.
Sravanthi
,
C. S.
,
2019
, “
Effect of Nonlinear Thermal Radiation on Silver and Copper Water Nanofluid Flow due to a Rotating Disk With Variable Thickness in the Presence of Nonuniform Heat Source/Sink Using the Homotopy Analysis Method
,”
Heat Transf.
,
48
(
8
), pp.
4033
4048
.
41.
Ahmed
,
J.
,
Khan
,
M.
, and
Ahmad
,
L.
,
2019
, “
Transient Thin Film Flow of Nonlinear Radiative Maxwell Nanofluid Over a Rotating Disk
,”
Phys. Lett. A
,
383
(
12
), pp.
1300
1305
. 10.1016/j.physleta.2019.01.024
42.
Turkyilmazoglu
,
M.
,
2020
, “
Single Phase Nanofluids in Fluid Mechanics and Their Hydrodynamic Linear Stability Analysis
,”
Comput. Methods Programs Biomed.
,
187
, p.
105171
. 10.1016/j.cmpb.2019.105171
43.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2014
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: A Revised Model
,”
Int. J. Heat Mass Transfer
,
68
, pp.
211
214
. 10.1016/j.ijheatmasstransfer.2013.09.026
44.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model
,”
Int. J. Heat Mass Transfer
,
77
, pp.
126
129
.
45.
Raees
,
A.
,
Xu
,
H.
,
Sun
,
Q.
, and
Pop
,
I.
,
2015
, “
Mixed Convection in Gravity-Driven Nano-Liquid Film Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Appl. Math. Mech.
,
36
(
2
), pp.
163
178
. 10.1007/s10483-015-1901-7
46.
Atlas
,
M.
,
Haq
,
R.
, and
Mekkaoui
,
T.
,
2016
, “
Active and Zero Flux of Nanoparticles Between a Squeezing Channel With Thermal Radiation Effects
,”
J. Mol. Liq.
,
223
, pp.
289
298
. 10.1016/j.molliq.2016.08.032
47.
Halim
,
N. A.
,
Haq
,
R.
, and
Noor
,
N. F. M.
,
2017
, “
Active and Passive Controls of Nanoparticles in Maxwell Stagnation Point Flow Over a Slipped Stretched Surface
,”
Meccanica
,
55
, pp.
1527
1539
. 10.1007/s11012-016-0517-9
48.
Giri
,
S. S.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2017
, “
Stefan Blowing Effects on MHD Bioconvection Flow of a Nanofluid in the Presence of Gyrotactic Microorganisms With Active and Passive Nanoparticles Flux
,”
Eur. Phys. J. Plus
,
132
(
2
), p.
101
. 10.1140/epjp/i2017-11338-7
49.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2017
, “
Fabrication of Active and Passive Controls of Nanoparticles of Unsteady Nanofluid Flow From a Spinning Body Using HPM
,”
Eur. Phys. J. Plus
,
132
(
7
), p.
323
. 10.1140/epjp/i2017-11629-y
50.
Acharya
,
N.
,
2019
, “
Active-passive Controls of Liquid di-Hydrogen Mono-Oxide Based Nanofluidic Transport Over a Bended Surface
,”
Int. J. Hydrogen Energy
,
44
(
50
), pp.
27600
27614
. 10.1016/j.ijhydene.2019.08.191
51.
Halim
,
N. A.
,
Sivasankaran
,
S.
, and
Noor
,
N. F. M.
,
2017
, “
Active and Passive Controls of the Williamson Stagnation Nanofluid Flow Over a Stretching/Shrinking Surface
,”
Neural Comput. Appl.
,
28
(
S1
), pp.
1023
1033
. 10.1007/s00521-016-2380-y
52.
Ramesh
,
G. K.
,
2020
, “
Analysis of Active and Passive Control of Nanoparticles in Viscoelastic Nanomaterial Inspired by Activation Energy and Chemical Reaction
,”
Phys. A
,
550
, p.
123964
. 10.1016/j.physa.2019.123964
53.
Sithole
,
H.
,
Mondal
,
H.
, and
Sibanda
,
P.
,
2018
, “
Entropy Generation in a Second Grade Magnetohydrodynamic Nanofluid Flow Over a Convectively Heated Stretching Sheet With Nonlinear Thermal Radiation and Viscous Dissipation
,”
Results Phys.
,
9
, pp.
1077
1085
. 10.1016/j.rinp.2018.04.003
54.
Dhlamini
,
M.
,
Kameswaran
,
P. K.
,
Sibanda
,
P.
,
Motsa
,
S.
, and
Mondal
,
H.
,
2019
, “
Activation Energy and Binary Chemical Reaction Effects in Mixed Convective Nanofluid Flow With Convective Boundary Conditions
,”
J. Comput. Des. Eng.
,
6
, pp.
149
158
.
55.
Das
,
S.
,
Mondal
,
H.
,
Kundu
,
P. K.
, and
Sibanda
,
P.
,
2019
, “
Spectral Quasi Linearization Method for Casson Fluid With Homogeneous Heterogeneous Reaction in Presence of Nonlinear Thermal Radiation Over an Exponential Stretching Sheet
,”
Multidiscip. Modell. Mater. Struct.
,
15
(
2
), pp.
398
417
. 10.1108/MMMS-04-2018-0073
56.
Bellman
,
R. E.
, and
Kalaba
,
R. E.
,
1965
, “Quasilinearization and Nonlinear Boundary- Value Problems,”
Modern Analytic and Computional Methods in Science and Mathematics
,
3
,
American Elsevier
,
New York, NY
.
You do not currently have access to this content.