Abstract

The heat transfer performance of a pulsating heat pipe (PHP) configured as a three-dimensional (3D) structure is reported in the present study. The PHP structure resembles an elongated coil and termed “coil type PHP.” Five different heating modes were created by positioning the evaporator at different locations and placing the PHP device in vertical and horizontal orientations. Studies were conducted primarily with de-ionized water as the working fluid. Limited number of experiments were also performed using binary fluids. The filling ratio was varied from 40% to 80%, while the heat input was varied from 20 W to 240 W. The vertical and horizontal orientations show almost 30 and 10 times reduction in the thermal resistance, respectively, compared with bare PHP tubes without the working fluid. This results in an effective thermal conductivity of more than 3000 W/(m K) and 12,000 W/(m K) for horizontal and vertical orientations, respectively. The use of the binary fluid (10 wt% and 20 wt% of ethanol aqueous solution) results in an increase in the maximum heat input at different heating modes. The temperature of the coolant supplied to the condenser section of the PHP was also varied, and the thermal resistance of the system was observed to reduce with an increase in the coolant temperature.

References

1.
Khandekar
,
S.
,
Groll
,
M.
,
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2002
, “
Pulsating Heat Pipes: Thermo-Fluidic Characteristics and Comparative Study With Single Phase Thermosyphon Enthalpy
,”
12th International Heat Transfer Conference
,
Grenoble, France
,
Aug. 18–23
, pp.
459
464
.
2.
Bastakoti
,
D.
,
Zhang
,
H.
,
Li
,
D.
,
Cai
,
W.
, and
Li
,
F.
,
2018
, “
An Overview on the Developing Trend of Pulsating Heat Pipe and Its Performance
,”
Appl. Therm. Eng.
,
141
, pp.
305
332
. 10.1016/j.applthermaleng.2018.05.121
3.
Nazari
,
M. A.
,
Ahmadi
,
M. H.
,
Ghasempour
,
R.
,
Shafii
,
M. B.
,
Mahian
,
O.
, and
Kalogirou
,
S.
,
2018
, “
A Review on Pulsating Heat Pipes: From Solar to Cryogenic Applications
,”
Appl. Energy
,
222
, pp.
475
484
. 10.1016/j.apenergy.2018.04.020
4.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2009
, “
Performance Characteristics of Pulsating Heat Pipes as Integral Thermal Spreaders
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
815
824
. 10.1016/j.ijthermalsci.2008.05.017
5.
Khandekar
,
S.
,
Schneider
,
M.
,
Schafer
,
P.
,
Kulenovic
,
R.
, and
Groll
,
M.
,
2002
, “
Thermofluid Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
303
317
. 10.1080/10893950290098340
6.
Charoensawan
,
P.
, and
Khandekar
,
S.
,
2009
, “
Closed Loop Pulsating Heat Pipes Part A : Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
. 10.1016/S1359-4311(03)00159-5
7.
Ghanta
,
N.
, and
Pattamatta
,
A.
,
2016
, “
Modeling of Compressible Phase-Change Heat Transfer in a Taylor-Bubble With Application to Pulsating Heat Pipe (PHP)
,”
Numer. Heat Transfer, Part A Appl.
,
69
(
12
), pp.
1355
1375
. 10.1080/10407782.2016.1139980
8.
Han
,
H.
,
Cui
,
X.
,
Zhu
,
Y.
, and
Sun
,
S.
,
2014
, “
A Comparative Study of the Behavior of Working Fluids and Their Properties on the Performance of Pulsating Heat Pipes (PHP)
,”
Int. J. Therm. Sci.
,
82
, pp.
138
147
. 10.1016/j.ijthermalsci.2014.04.003
9.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid. Sci.
,
35
(
7
), pp.
1265
1273
. 10.1016/j.expthermflusci.2011.04.014
10.
Bhuwakietkumjohn
,
N.
, and
Rittidech
,
S.
,
2010
, “
Internal Flow Patterns on Heat Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves Using Ethanol and a Silver Nano-Ethanol Mixture
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1000
1007
. 10.1016/j.expthermflusci.2010.03.003
11.
Tong
,
B. Y.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
,
2001
, “
Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
21
(
18
), pp.
1845
1862
. 10.1016/S1359-4311(01)00063-1
12.
Spinato
,
G.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2016
, “
Operational Regimes in a Closed Loop Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
102
, pp.
78
88
. 10.1016/j.ijthermalsci.2015.11.006
13.
Mameli
,
M.
,
Marengo
,
M.
, and
Khandekar
,
S.
,
2014
, “
Local Heat Transfer Measurement and Thermo-Fluid Characterization of a Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
75
, pp.
140
152
. 10.1016/j.ijthermalsci.2013.07.025
14.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
,
43
(
1
), pp.
13
20
. 10.1016/S1290-0729(03)00100-5
15.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Study on a Pulsating Heat Pipe With Self-Rewetting Fluid
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031005
. 10.1115/1.4001855
16.
Hu
,
Y.
,
Liu
,
T.
,
Li
,
X.
, and
Wang
,
S.
,
2014
, “
Heat Transfer Enhancement of Micro Oscillating Heat Pipes With Self-Rewetting Fluid
,”
Int. J. Heat Mass Transfer
,
70
, pp.
496
503
. 10.1016/j.ijheatmasstransfer.2013.11.031
17.
Pachghare
,
P. R.
, and
Mahalle
,
A. M.
,
2014
, “
Thermo-Hydrodynamics of Closed Loop Pulsating Heat Pipe: An Experimental Study
,”
J. Mech. Sci. Technol.
,
28
(
8
), pp.
3387
3394
. 10.1007/s12206-014-0751-9
18.
Yamagami
,
K.
,
Fumoto
,
K.
,
Savino
,
R.
,
Kawanami
,
T.
, and
Inamura
,
T.
,
2016
, “
Heat Transfer Characteristics of Flat Plate Pulsating Heat Pipe Using Self-Rewetting Fluids
,”
Joint 18th IHPC and 12th IHPS
,
Jeju, Korea
,
June 12–16
, pp.
449
454
.
19.
Khandekar
,
S.
, and
Charoensawan
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes Part B : Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2021
2033
. 10.1016/S1359-4311(03)00168-6
20.
Spinato
,
G.
,
Borhani
,
N.
,
D’Entremont
,
B. P.
, and
Thome
,
J. R.
,
2015
, “
Time-Strip Visualization and Thermo-Hydrodynamics in a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
78
, pp.
364
372
. 10.1016/j.applthermaleng.2014.12.045
21.
Mameli
,
M.
,
Manno
,
V.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2014
, “
Thermal Instability of a Closed Loop Pulsating Heat Pipe: Combined Effect of Orientation and Filling Ratio
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
222
229
. 10.1016/j.expthermflusci.2014.04.009
22.
Tseng
,
C. Y.
,
Yang
,
K. S.
,
Chien
,
K. H.
,
Wu
,
S. K.
, and
Wang
,
C. C.
,
2016
, “
A Novel Double Pipe Pulsating Heat Pipe Design to Tackle Inverted Heat Source Arrangement
,”
Appl. Therm. Eng.
,
106
, pp.
697
701
. 10.1016/j.applthermaleng.2016.06.034
23.
Ebrahimi
,
M.
,
Shafii
,
M. B.
, and
Bijarchi
,
M. A.
,
2015
, “
Experimental Investigation of the Thermal Management of Flat-Plate Closed-Loop Pulsating Heat Pipes With Interconnecting Channels
,”
Appl. Therm. Eng.
,
90
, pp.
838
847
. 10.1016/j.applthermaleng.2015.07.040
24.
Chien
,
K. H.
,
Lin
,
Y. T.
,
Chen
,
Y. R.
,
Yang
,
K. S.
, and
Wang
,
C. C.
,
2012
, “
A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5722
5728
. 10.1016/j.ijheatmasstransfer.2012.05.068
25.
Deng
,
Z.
,
Zheng
,
Y.
,
Liu
,
X.
,
Zhu
,
B.
, and
Chen
,
Y.
,
2017
, “
Experimental Study on Thermal Performance of an Anti-Gravity Pulsating Heat Pipe and Its Application on Heat Recovery Utilization
,”
Appl. Therm. Eng.
,
125
, pp.
1368
1378
. 10.1016/j.applthermaleng.2017.07.107
26.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
. 10.1016/j.applthermaleng.2007.01.033
27.
Khandekar
,
S.
,
Silwal
,
V.
,
Bhatnagar
,
A.
, and
Sharma
,
P.
,
2010
, “
Global Effectiveness of Pulsating Heat Pipe Heat Exchangers: Modeling and Experiments
,”
Heat Pipe Sci. Technol. Int. J.
,
1
(
3
), pp.
279
302
. 10.1615/HeatPipeScieTech.2011003621
28.
Qu
,
J.
,
Zhao
,
J.
, and
Rao
,
Z.
,
2017
, “
Experimental Investigation on Thermal Performance of Multi-Layers Three-Dimensional Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
115
, pp.
810
819
. 10.1016/j.ijheatmasstransfer.2017.08.082
29.
Thompson
,
S. M.
,
Winholtz
,
R. A.
, and
Wilson
,
C.
,
2009
, “
Experimental Investigation of Miniature Three-Dimensional Flat-Plate Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043210
. 10.1115/1.3072953
30.
Takawale
,
A.
,
Abraham
,
S.
,
Siela
,
A.
,
Sinha
,
P.
,
Pattamatta
,
A.
, and
Stephan
,
P.
,
2019
, “
A Comparative Study of Flow Regimes and Thermal Performance Between Flat Plate Pulsating Heat Pipe and Capillary Tube Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
149
, pp.
613
624
. 10.1016/j.applthermaleng.2018.11.119
31.
Coleman
,
H. W.
, and
Steele Jr.
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley
,
New York
.
32.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), pp.
279
421
. 10.1063/1.3253100
33.
Battino
,
R.
,
Rettich
,
T. R.
, and
Tominaga
,
T.
,
1984
, “
The Solubility of Nitrogen and Air in Liquids
,”
J. Phys. Chem. Ref. Data
,
13
(
2
), pp.
563
600
. 10.1063/1.555713
34.
Daimaru
,
T.
, and
Nagai
,
H.
,
2015
, “
Operational Characteristics of the Oscillating Heat Pipe With Noncondensable Gas
,”
J. Thermophys. Heat Transfer
,
29
(
3
), pp.
563
571
. 10.2514/1.T4461
You do not currently have access to this content.