Abstract

In the present work, large eddy simulation (LES) was performed to access the film cooling performance in the supersonic flow over a flat plate with a perpendicular slot injection configuration. The study was carried out for three mainstream Mach No.; Mα = 1.2, 2.67, and 3.3 and three coolant stream Mach No.: 0.05, 0.1, and 0.15. In supersonic flow, temperature rise inside the boundary layer is a major issue considering it causes high rates of heat transfer to the coolant film. To select a suitable LES sub-grid scale (SGS) model, LES results obtained from the present study using the LES SGS models such as Smagorinky-Lilly, wall adapted local eddy viscosity (WALE), and wall-modeled LES (WMLES) models were compared with DNS results of Keller and Kloker. The parametric study showed that the higher mainstream Mach No. caused increased wall temperature and reduced effectiveness. The film cooling effectiveness appeared to reduce almost by 10% when the mainstream Mach No. is increased from 1.2 to 2.67; however, no apparent difference was observed in effectiveness between the mainstream Mach No. 2.67 and 3.3. It was found that doubling and tripling the coolant stream Mach No. from 0.05 to 0.1 and 0.15, the length of potential core region also doubled and tripled, respectively, from 4 X/S to 8 X/S and 13 X/S and hence significant improvement in the film cooling effectiveness was observed.

References

1.
Stollery
,
J. L.
, and
El-ehwany
,
A. A. M.
,
1965
, “
A Note on the Use of a Boundary-Layer Model for Correlating Film-Cooling Data
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
55
65
. 10.1016/0017-9310(65)90097-9
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Tsou
,
F. K.
, and
Haji-sheikh
,
A.
,
1966
, “
Film Cooling With Air and Helium Injection Through a Rearward-Facing Slot Into a Supersonic Air Flow R
,”
AIAA J.
,
4
(
6
), pp.
981
985
. 10.2514/3.3591
3.
Parthasarathy
,
K.
, and
Zakkay
,
V.
,
1970
, “
An Experimental Investigation of Turbulent Slot Injection at Mach 6
,”
AIAA J.
,
8
(
7
), pp.
1302
1307
. 10.2514/3.5889
4.
Richards
,
B. E.
, and
Stollery
,
J. L.
,
1979
, “
Laminar Film Cooling Experiments in Hypersonic Flow
,”
J. Aircr.
,
16
(
3
), pp.
177
181
. 10.2514/3.58502
5.
O’connor
,
J. P.
, and
Haji-Sheikh
,
A.
,
1992
, “
Numerical Study of Film Cooling in Supersonic Flow
,”
AIAA J.
,
30
(
10
), pp.
2426
2433
. 10.2514/3.11243
6.
Juhany
,
K. A.
,
Hunt
,
M. L.
, and
Sivo
,
J. M.
,
1994
, “
Influence of Injectant Mach Number and Temperature on Supersonic Film Cooling
,”
J. Thermophys. Heat Transf.
,
8
(
1
), pp.
59
67
. 10.2514/3.501
7.
Ludescher
,
S.
, and
Olivier
,
H.
,
2018
, “
Experimental Investigations of Film Cooling Behavior under Rocket-Engine-Like Flow Conditions
,”
AIAA Aerosp. Sci. Meet. 2018
,
Kissimmee, FL
,
Jan. 8–12
.
8.
Peng
,
W.
,
Sun
,
X.
,
Jiang
,
P.
, and
Wang
,
J.
,
2017
, “
Effect of Continuous or Discrete Shock Wave Generators on Supersonic Film Cooling
,”
Int. J. Heat Mass Transfer
,
108
(
Part-A
), pp.
770
783
. 10.1016/j.ijheatmasstransfer.2016.12.044
9.
Juhany
,
K. A.
, and
Hunt
,
M. L.
,
1994
, “
Flow-Field Measurements in Supersonic Film Cooling Including the Effect of Shock Wave Interaction
,”
AIAA J.
,
32
(
3
), pp.
578
585
. DOI: 10.2514/3.12024
10.
Konopka
,
M.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2012
, “
Large-Eddy Simulation of Shock/Cooling-Film Interaction
,”
AIAA J.
,
50
(
10
), pp.
2102
2114
. 10.2514/1.J051405
11.
Zakkay
,
V.
,
Wang
,
C. R.
, and
Miyazawa
,
M.
,
1955
, “Technical Notes: Effect of Adverse Pressure Gradient on Film Cooling Effectiveness,”
AIAA J.
,
12
(
5
).
12.
Tyagi
,
Mayank
, and
Acharya
,
S.
,
2007
,
“Flow and Heat Transfer Predictions for Film-Cooling Flows Using Large Eddy Simulations,” Def. Tech. Inf. Cent., ADA412801
, pp.
799
806
.
13.
Konopka
,
M.
,
Meinkey
,
M.
, and
Schröderz
,
W.
,
2011
, “
Large-Eddy Simulation of Supersonic Film Cooling at Laminar and Turbulent Injection
,”
17th AIAA Int. Sp. Planes Hypersonic Syst. Technol. Conference
,
San Francisco, CA
,
Apr. 11–14
.
14.
Konopka
,
Martin
,
Meinke
,
Matthias
, and
Schr¨oder
,
Wolfgang
,
2011
, “
Large-Eddy Simulation of Supersonic FilmCooling at Finite Pressure Gradients
,”
High Performance Computing in Science and Engineering ’11
,
Berlin Heidelberg
.
15.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3118
3127
. 10.1016/j.ijheatmasstransfer.2009.01.030
16.
Keller
,
M. A.
, and
Kloker
,
M. J.
,
2017
, “
Direct Numerical Simulation of Foreign-Gas Film Cooling in Supersonic Boundary-Layer Flow
,”
AIAA J.
,
55
(
1
), pp.
99
111
. 10.2514/1.J055115
17.
ANSYS Inc
,
2018
,
“ANSYS Fluent Theory Guide, 18” ANSYS Inc., USA
.
18.
Pachpute
,
S.
, and
Premachandran
,
B.
,
2018
, “
Experimental Investigation and Large Eddy Simulations of Turbulent Slot Jet Impingement Cooling of a Circular Cylinder With and Without a Quadrilateral Confinement
,”
Appl. Therm. Eng.
,
144
, pp.
854
876
. 10.1016/j.applthermaleng.2018.08.101
19.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
. 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
20.
Shukla
,
A. K.
, and
Dewan
,
A.
,
2019
, “
OpenFOAM Based LES of Slot Jet Impingement Heat Transfer at Low Nozzle to Plate Spacing Using Four SGS Models
,”
Heat Mass Transf. und Stoffuebertragung
,
55
(
3
), pp.
911
931
. 10.1007/s00231-018-2470-8
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence and Combustion
,
62
(
3
), pp.
183
200
. DOI: 10.1023/A:1009995426001
22.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
. 10.1016/j.ijheatfluidflow.2008.07.001
23.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2016
, “
Numerical Investigation of Film Cooling on a 2D Corrugated Surface
,”
Numer. Heat Transf. Part A: Appl.
,
70
(
11
), pp.
1253
1270
. 10.1080/10407782.2016.1230431
24.
Johnson
,
P. L.
, and
Shyam
,
Vikram
,
2012
, “
Large Eddy Simulation of a Film Cooling Flow Injected From an Inclined Discrete Cylindrical Hole Into a Cross Flow With Zero-Pressure Gradient Turbulent Boundary Layer
,”
NASA/TM
,
217695
, pp.
1
23
. http://www.sti.nasa.gov
25.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
You do not currently have access to this content.