Abstract

Three-dimensional (3D) natural convection with isothermal discrete heat sources in a cubical cavity has been carefully studied using the 3D vector potential–vorticity formulation. Based on the finite volume method, the governing equations are solved with a homemade computational code (written in Fortran). Assuming that all cavity vertical walls are adiabatic, the upper wall of the cavity is kept at a cold temperature. However, in the bottom face, heat sources are placed under different configurations. The size of the discrete sources, their positions, and their numbers are varied for different Rayleigh numbers. The Prandtl number is fixed at 0.71. Three-dimensional distribution of the temperature iso-surfaces, the heat transfer rate, and entropy generation is evaluated. It is found that heat transfer and entropy generation are strongly affected by the arrangement of the discrete heated sources. In conclusion, the heat transfer rate is maximized, and the entropy generation is minimized for the inline arrangement of more than two heaters compared to the diagonal one.

References

1.
Bradford
,
R. A. W.
,
2013
, “
An Investigation Into the Maximum Entropy Production Principle in Chaotic Rayleigh–Bénard Convection
,”
Physica A
,
392
(
24
), pp.
6273
6283
. 10.1016/j.physa.2013.08.035
2.
Biswal
,
P.
, and
Basak
,
T.
,
2017
, “
Role of Thermal and Flow Characteristics on Entropy Generation During Natural Convection in Porous Enclosures with Curved Walls Subjected to Rayleigh-Bénard Heating
,”
Int. J. Heat Mass. Tranfer
,
109
(
1
), pp.
1261
1280
. 10.1016/j.ijheatmasstransfer.2017.01.118
3.
Biswal
,
P.
, and
Basak
,
T.
,
2018
, “
Role of Differential vs Rayleigh-Bénard Heating at Curved Walls for Efficient Processing via Entropy Generation Approach
,”
Int. J. Heat Mass. Tranfer
,
124
(
1
), pp.
390
413
. 10.1016/j.ijheatmasstransfer.2018.03.056
4.
Biswal
,
P.
, and
Basak
,
T.
,
2018
, “
Investigation on Thermal Efficiency via Entropy Generation Analysis Within Cavities with Curved Walls Subjected to Differential/Rayleigh-Benard Heating
,”
Mater. Proc.
,
5
(
11–2
), pp.
23107
23118
. 10.1016/j.matpr.2018.11.041
5.
Aydin
,
O.
, and
Yang
,
W. J.
,
2000
, “
Natural Convection in Enclosures With Localized Heating Flow Below and Symmetrical Cooling From Sides
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
5
), pp.
518
529
. 10.1108/09615530010338196
6.
Deng
,
Q.-H.
,
Tang
,
G.-F.
,
Li
,
Y.
, and
Ha
,
M. Y.
,
2002
, “
Interaction Between Discrete Heat Sources in Horizontal Natural Convection Enclosures
,”
Int. J. Heat Mass. Transfer
,
45
(
26
), pp.
5117
5132
. 10.1016/S0017-9310(02)00221-1
7.
Deng
,
Q.-H.
,
Tang
,
G.-F.
, and
Li
,
Y.
,
2002
, “
Combined Temperature Scale for Analyzing Natural Convection in Rectangular Enclosures With Discrete Wall Heat Source
,”
Int. J. Heat Mass. Tranfer
,
45
(
16
), pp.
3437
3446
. 10.1016/S0017-9310(02)00060-1
8.
Bae
,
J. H.
, and
Hyun
,
J. M.
,
2004
, “
Time-Dependent Buoyant Convection in an Enclosure With Discrete Heat Sources
,”
Int. J. Therm. Sci
,
43
(
1
), pp.
3
11
. 10.1016/S1290-0729(03)00102-9
9.
Chen
,
T.-H.
, and
Chen
,
L.-Y.
,
2007
, “
Study of Buoyancy-Induced Flows Subjected to Partially Heated Sources on the Left and Bottom Walls in a Square Enclosure
,”
Int. J. Therm. Sci
,
46
(
12
), pp.
1219
1231
. 10.1016/j.ijthermalsci.2006.11.021
10.
Zhang
,
X.
,
Yu
,
J.
,
Su
,
G.
,
Yao
,
Z.
,
Hao
,
P.
, and
He
,
F.
,
2016
, “
Statistical Analysis of Turbulent Thermal Free Convection Over a Small Heat Source in a Large Enclosed Cavity
,”
Appl. Therm. Eng
,
93
(
1
), pp.
446
455
. 10.1016/j.applthermaleng.2015.10.011
11.
Chadwick
,
M. L. B.
,
Webb
,
W. H.
, and
Heaton
,
S.
,
1991
, “
Natural Convection From two-Dimensional Discrete Heat Sources in a Rectangular Enclosure
,”
Int. J. Heat Mass. Tranfer
,
34
(
7
), pp.
1679
1693
. 10.1016/0017-9310(91)90145-5
12.
Kolsi
,
L.
,
Kalidasan
,
K.
,
Alghamdi
,
A.
,
Borjini
,
M. N.
, and
Kanna
,
R.
,
2016
, “
Natural Convection and Entropy Generation on a Cubical Cavity With Twin Adiabatic Blocks and Filled by Aluminum Oxide–Water Nanofluid
,”
Numer. Heat Transfer, Part A
,
70
(
3
), pp.
242
259
. 10.1080/10407782.2016.1173478
13.
Kolsi
,
L.
,
Mahian
,
O.
,
Öztop
,
H. F.
,
Aich
,
W.
,
Borjini
,
M. N.
,
Abu-Hamdeh
,
N.
, and
Ben Aissia
,
H.
,
2016
, “
3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavity Having Adiabatic Diamond-Shaped Obstacle
,”
Entropy
,
18
(
6
), p.
232
. 10.3390/e18060232
14.
Kolsi
,
L.
,
2016
, “
Numerical Study of Natural Convection and Entropy Generation of Al2O3–Water Nanofluid Within a Cavity Equipped With a Conductive Baffle
,”
J. Appl. Fluid Mech
,
9
(
5
), pp.
2177
2186
. 10.18869/acadpub.jafm.68.236.25506
15.
Kolsi
,
L.
,
Oztop
,
H. F.
,
Abu-Hamdeh
,
N.
,
Alghamdi
,
A.
, and
Borjini
,
M. N.
,
2016
, “
Three-Dimensional Analysis of Natural Convection and Entropy Generation in a Sharp-Edged Finned Cavity
,”
Alex. Eng. J.
,
55
(
2
), pp.
991
1004
. 10.1016/j.aej.2016.02.030
16.
Kolsi
,
L.
,
Oztop
,
H. F.
,
Alghamdi
,
A.
,
Abu-Hamdeh
,
N.
,
Borjini
,
M. N.
, and
Ben Aissia
,
H.
,
2016
, “
A Computational Work on Three-Dimensional Analysis of Natural Convection and Entropy Generation in Nanofluid-Filled Enclosures With Triangular Solid Insert at the Corners
,”
J. Mol. Liq.
,
218
(
1
), pp.
260
274
. 10.1016/j.molliq.2016.02.083
17.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
867
872
. 10.1016/j.icheatmasstransfer.2010.05.007
18.
Wang
,
Z.
,
Wei
,
Y. W.
, and
Qian
,
Y.
,
2018
, “
Numerical Study on Entropy Generation in Thermal Convection With Differentially Discrete Heat Boundary Conditions
,”
Entropy
,
20
(
5
), p.
351
. 10.3390/e20050351
19.
Jarray
,
K.
,
Mazgar
,
A.
, and
Ben Nejma
,
F.
,
2019
, “
Effect of Combined Natural Convection and Non-gray Gas Radiation on Entropy Generation in a Circular Enclosure With Partial Heating
,”
Adv. Mech. Eng.
,
11
(
12
), pp.
1
15
. 10.1177/1687814019895417
20.
Gibanov
,
N. S.
, and
Sheremet
,
M. A.
,
2018
, “
Natural Convection in a Cubical Cavity With Different Heat Source Configurations
,”
Therm. Sci. Eng. Prog.
,
7
(
1
), pp.
138
145
. 10.1016/j.tsep.2018.06.004
21.
Ozoe
,
H.
, and
Okada
,
K.
,
1989
, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1939
1954
. 10.1016/0017-9310(89)90163-4
22.
Al-Rashed
,
A.
,
Kolsi
,
L.
,
Tashkandi
,
M.
,
Hasani Malekshah
,
E.
,
Chamkha
,
A.
, and
Borjini
,
M. N.
,
2019
, “
Three-Dimensional Combined Radiation-Magnetoconvection of Low Electrically Conductive Dielectric Oxide Melt
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
10
), pp.
3611
3637
. 10.1108/HFF-06-2018-0263
23.
Magherbi
,
M.
,
Abbassi
,
H.
,
Hidouri
,
N.
, and
Brahim
,
A. B.
,
2006
, “
Second Law Analysis in Convective Heat and Mass Transfer
,”
Entropy
,
8
(
1
), pp.
1
17
. 10.3390/e8010001
24.
Wakashima
,
S.
, and
Saitoh
,
T. S.
,
2004
, “
Benchmark Solutions for Natural Convection in a Cubic Cavity Using the High-Order Time-Space Method
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
853
864
. 10.1016/j.ijheatmasstransfer.2003.08.008
25.
Fusegi
,
T.
,
Hyun
,
J. M.
,
Kuwahara
,
K.
, and
Farouk
,
B.
,
1991
, “
A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1543
1557
. 10.1016/0017-9310(91)90295-P
26.
Wolff
,
F.
,
Beckermann
,
C.
, and
Viskanta
,
R.
,
1988
, “
Natural Convection of Liquid Metals in Vertical Cavities
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
83
91
. 10.1016/0894-1777(88)90051-9
You do not currently have access to this content.