Abstract

We present a numerical analysis of electrophoretic transport of a biological sample, such as, deoxyribose nucleic acid (DNA) via nonlinear temperature gradient within a microfluidic channel having patterned surface charges. The transport of the electrolyte is induced by electroosmotic force by imposing an axial electric field, superposed with the wall electric field via electrodes embedded along the wall of the microchannel. We consider the periodic variation of wall zeta potential in electrokinetic motion of an electrolyte wherein the DNA sample exhibits electrophoretic migration. Temperature dependence of the thermophysical properties of the electrolyte and the electrophoretic mobility and diffusivity of the analyte sample is accounted for in the model to improve its accuracy. Nonlinear longitudinal temperature field along the microchannel is induced via Joule heating by suitably shaping the channel geometry, which enhances the concentration of DNA approximately 270 folds by applying just 500 V DC field with constant zeta potential at the walls. The study further reveals that the concentration of DNA reduces drastically when a periodic wall zeta potential is applied. Results of the study lend to the design of novel electrically actuated bio-microfluidic devices with tunable solute separation and dispersion capabilities.

References

1.
Wang
,
L.
, and
Li
,
P. C. H.
,
2011
, “
Microfluidic DNA Microarray Analysis: A Review
,”
Anal. Chim. Acta
,
687
(
1
), pp.
12
27
.
2.
Cima
,
I.
,
Yee
,
C. W.
,
Iliescu
,
F. S.
,
Phyo
,
W. M.
,
Lim
,
K. H.
,
Iliescu
,
C.
, and
Tan
,
M. H.
,
2013
, “
Label-Free Isolation of Circulating Tumor Cells in Microfluidic Devices: Current Research and Perspectives
,”
Biomicrofluidics
,
7
(
1
), p.
011810
.
3.
Smith
,
A.
,
2005
, “
Biofilms and Antibiotic Therapy: Is There a Role for Combating Bacterial Resistance by the Use of Novel Drug Delivery System?
,”
Adv. Drug Delivery Rev.
,
57
(
10
), pp.
1539
1550
.
4.
Pengyu Chen
,
W. M.
, and
Chung
,
M.
,
2015
, “
Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays
,”
ACS Nano
,
9
(
4
), pp.
4173
4181
.
5.
Song
,
Y.
,
Hormes
,
J.
, and
Kumar
,
C. S. S. R.
,
2008
, “
Microfluidic Synthesis of Nanomaterials
,”
Small
,
4
(
6
), pp.
698
711
.
6.
Wu
,
R.
,
Wang
,
Z.
,
Zhao
,
W.
,
Yeung
,
W. S. B.
, and
Fung
,
Y. S.
,
2013
, “
Multi-Dimension Microchip-Capillary Electrophoresis Device for Determination of Functional Proteins in Infant Milk Formula
,”
J. Chromatogr., A
,
1304
, pp.
220
226
.
7.
Kang
,
K. H.
,
Xuan
,
X.
,
Kang
,
Y.
, and
Li
,
D.
,
2006
, “
Effects of DC-Dielectrophoretic Force on Particle Trajectories in Microchannels
,”
J. Appl. Phys.
,
99
(
6
), p. 064702.
8.
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Microfluidic Temperature Gradient Focusing
,”
Anal. Chem.
,
74
(
11
), pp.
2556
2564
.
9.
Ge
,
Z. W.
,
Wang
,
W.
, and
Yang
,
C.
,
2015
, “
Rapid Concentration of Deoxyribonucleic Acid via Joule Heating Induced Temperature Gradient Focusing in Poly-dimethylsiloxane Microfluidic Channel
,”
Anal. Chim. Acta
,
858
, pp.
91
97
.
10.
Sommer
,
G. J.
,
Kim
,
S. M.
,
Littrell
,
R. J.
, and
Hasselbrink
,
E. F.
,
2007
, “
Theoretical and Numerical Analysis of Temperature Gradient Focusing via Joule Heating
,”
Lab Chip
,
7
(
7
), pp.
898
907
.
11.
Lin
,
H.
,
Shackman
,
J. G.
, and
Ross
,
D.
,
2008
, “
Finite Sample Effect in Temperature Gradient Focusing
,”
Lab Chip
,
8
(
6
), pp.
969
978
.
12.
Ge
,
Z. W.
,
Yang
,
C.
, and
Tang
,
G. Y.
,
2010
, “
Concentration Enhancement of Sample Solutes in a Sudden Expansion Microchannel With Joule Heating
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2722
2731
.
13.
Dutta
,
A.
,
Santra
,
A. K.
, and
Ganguly
,
R.
,
2021
, “
Microfluidic Concentration Enhancement of Bio-Analyte by Temperature Gradient Focusing via Joule Heating by DC Plus AC Field: A Numerical Approach
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061002
.
14.
Matsui
,
T.
,
Franzke
,
J.
,
Manz
,
A.
, and
Janasek
,
D.
,
2007
, “
Temperature Gradient Focusing in a PDMS/Glass Hybrid Microfluidic Chip
,”
Electrophoresis
,
28
(
24
), pp.
4606
4611
.
15.
Shameli
,
S. M.
,
Glawdel
,
T.
,
Liu
,
Z.
, and
Ren
,
C. L.
,
2012
, “
Bilinear Temperature Gradient Focusing in a Hybrid PDMS/Glass Microfluidic Chip Integrated With Planar Heaters for Generating Temperature Gradient
,”
Anal. Chem.
,
84
(
6
), pp.
2968
2973
.
16.
Kim
,
S. M.
,
Sommer
,
G. J.
,
Burns
,
M. A.
, and
Hasselbrink
,
E. F.
,
2006
, “
Low-Power Concentration and Separation Using Temperature Gradient Focusing via Joule Heating
,”
Anal. Chem.
,
78
(
23
), pp.
8028
8035
.
17.
Ghosal
,
S.
,
2004
, “
Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis
,”
Electrophoresis
,
25
(
2
), pp.
214
228
.
18.
Dutta
,
S.
,
Ghosal
,
S.
, and
Patankar
,
N. A.
,
2006
, “
Electroosmotic Flow in a Rectangular Channel With Variable Wall Zeta-Potential: Comparison of Numerical Simulation With Asymptotic Theory
,”
Electrophoresis
,
27
(
3
), pp.
611
619
.
19.
Sanchez
,
S.
,
Ascanio
,
G.
,
Mendez
,
F.
, and
Bautista
,
O.
,
2018
, “
Theoretical Analysis of Non-linear Joule Heating on an Electroosmotic Flow With Patterned Surface Charges
,”
Phys. Fluids
,
30
(
11
), p.
112002
.
20.
Mukherjee
,
S.
,
Dhar
,
J.
,
Dasgupta
,
S.
, and
Chakraborty
,
S.
,
2018
, “
Patterned Surface Charge Coupled With Thermal Gradients May Create Giant Augmentations of Solute Dispersion in Electro-Osmosis of Viscoelastic Fluids
,”
Royal Society.
doi.org/10.1098
21.
Kunti
,
G.
,
Bhattacharya
,
A.
, and
Chakraborty
,
S.
,
2017
, “
Analysis of Micromixing of Non-Newtonian Fluids Driven by Alternating Current Electrothermal Flow
,”
J. Non-Newtonian Fluid Mech.
,
247
, pp.
123
131
.
22.
Vargas
,
C.
,
Bautista
,
O.
, and
Mendez
,
F.
,
2019
, “
Effect of Temperature-Dependent Properties on Electroosmotic Mobility at Arbitrary Zeta Potentials
,”
Appl. Math. Model.
,
68
, pp.
616
628
.
You do not currently have access to this content.