Abstract

This work describes the use of deposition-based additive manufacturing (AM) techniques to fabricate air-cooled, two-fluid heat exchangers. The project focused on a Heating, Ventilation and Air Conditioning application and used an industry-standard copper/aluminum heat exchanger manufactured with conventional technology as the basis for assessing performance. The manufacturing constraints associated with using deposition-based AM technology for this application include the need for a continuous tool path within each build layer that allows uninterrupted extrusion and therefore defect-free water channel walls that correspond to a reliably leak-tight heat exchanger. A geometry that respects these constraints was developed, simulated, optimized and finally manufactured and tested. The material used was a composite of polymer filled with conductive flakes in order to provide high conductivity in the direction that heat must flow in this heat exchanger, across the wall separating the fluids. The measured performance for several test coupons matched the predicted performance and the test coupons exhibited performance that approach and in some cases exceeds conventional technology

References

1.
Marquardt
,
T.
, and
Zheng
,
E.
,
2017
, “History of 3D Printing,” https://blogs.lawrence.edu/makerspace/history/, Accessed July 25, 2017.
2.
Mulholland
,
T.
,
2018
, “
Additive Manufacturing of a Polymer Composite Heat Exchanger
,”
Ph.D. dissertation
,
University of Wisconsin
,
Madison, WI
.
3.
Thulukkanam
,
K.
,
2013
,
Heat Exchanger Design Handbook
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
4.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.
5.
Klein
,
E.
,
Ling
,
J.
,
Aute
,
V. C.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2018
, “
A Review of Recent Advances in Additively Manufactured Heat Exchangers
,”
Proceedings of the International Refrigeration and Air Conditioning Conference.
,
West Lafayette, IN
,
July 9–12
.
6.
Nafis
,
B. M.
,
Whitt
,
R.
,
Iradukunda
,
A. C.
, and
Huitink
,
D.
,
2020
, “
Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review
,”
Heat Transfer Eng.
,
42
(
12
), pp.
967
984
.
7.
Deisenroth
,
D. C.
,
Moradi
,
R.
,
Shooshtari
,
A. H.
,
Singer
,
F.
,
Bar-Cohen
,
A.
, and
Ohadi
,
M.
,
2018
, “
Review of Heat Exchangers Enabled by Polymer and Polymer Composite Additive Manufacturing
,”
Heat Transfer Eng.
,
39
(
19
), pp.
1652
1668
.
8.
Jafari
,
D.
, and
Wits
,
W. W.
,
2018
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Energy Conversion Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
420
442
.
9.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Rao
,
V. V.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
3
), p.
031901
.
10.
Zhang
,
X.
,
Tiwari
,
R.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
An Additively Manufactured Manifold-Microchannel Heat Exchanger for High Temperature Applications
,”
Appl. Therm. Eng.
,
143
, pp.
899
908
.
11.
Saltzman
,
D.
,
Bichnevicisu
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
, pp.
254
263
.
12.
Hathaway
,
B. J.
,
Garde
,
K.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2018
, “
Design and Characterization of an Additive Manufactured Hydraulic oil Cooler
,”
Int. J. Heat Mass Transfer
,
117
, pp.
188
200
.
13.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
2002
, “
Heat Transfer Enhancement by Delta-Wing-Generated tip Vortices in Flat-Plate and Developing Channel Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
6
), pp.
1158
1168
.
14.
Baumers
,
M.
,
2012
, “
Economic Aspects of Additive Manufacturing: Benefits, Costs, and Energy Consumption
,”
Ph.D. dissertation
,
Loughborough University
,
Loughborough, UK
.
15.
Wohlers
,
T.
,
Campbell
,
I.
,
Diegel
,
O.
,
Huff
,
R.
, and
Kowen
,
J.
,
2019
,
Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry
,
Wohlers Associates
,
Fort Collins, CO
.
16.
Cevallos
,
J. G.
,
Bar-Cohen
,
A.
, and
Deisenroth
,
D. C.
,
2016
, “
Thermal Performance of a Polymer Composite Webbed-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
98
, pp.
845
856
.
17.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Tiwari
,
R.
,
Dessiatoun
,
S. V.
,
Ohadi
,
M. M.
, and
Pearce
,
J. M.
,
2017
, “
Experimental Characterization of Heat Transfer in an Additively Manufactured Polymer Heat Exchanger
,”
Appl. Therm. Eng.
,
113
, pp.
575
584
.
18.
Denkenberger
,
D. C.
,
Brandemuehl
,
M. J.
,
Pearce
,
J. M.
, and
Zhai
,
J.
,
2012
, “
Expanded Microchannel Heat Exchanger: Design, Fabrication, and Preliminary Experimental Test
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
4
), pp.
532
544
.
19.
Dilberoglu
,
U. M.
,
Gharehpapagh
,
B.
,
Yaman
,
U.
, and
Dolen
,
M.
,
2017
, “
The Role of Additive Manufacturing in the Era of Industry 4.0
,”
Procedia Manuf.
,
11
, pp.
545
554
.
20.
Felber
,
R.
,
2017
, “
Design, Simulation, and Testing of Novel Air-Cooled Heat Exchangers Manufactured by Fused Filament Fabrication
,”
M.S. thesis
,
University of Wisconsin
,
Madison, WI
.
21.
Leeds
,
C. M.
,
2018
, “
Simulation of Tapered Pin Fins and Cylinders in Crossflow
,”
M.S. thesis
,
University of Wisconsin
,
Madison, WI
.
22.
Boxleitner
,
J.
,
2018
, “
Additive Design and Manufacturing of Air-Cooled Heat Exchangers
,”
M.S. thesis
,
University of Wisconsin
,
Madison, WI
.
23.
Boxleitner
,
J.
, and
Nellis
,
G. F.
,
2018
, “
Additive Manufacturing of Heat Exchangers
,”
Proceedings of the International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
,
July 9–12
.
24.
Mulholland
,
T.
,
Goris
,
S.
,
Boxleitner
,
J.
, and
Rudolph
,
N.
,
2018
, “
Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers
,”
J. Miner. Met. Mater. Soc.
,
70
(
4
), pp.
298
302
25.
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
26.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
,
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
27.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
28.
Wright
,
C. M.
,
2018
, “
Analysis of 3-D Printed Fin Performance
,”
M.S. thesis
,
University of Wisconsin
,
Madison, WI
.
29.
Nellis
,
G. F.
,
Boxleitner
,
J.
,
Rudolph
,
N.
,
Mulholland
,
T.
,
Felber
,
R.
,
Osswald
,
T.
,
Falke
,
T.
, et al
,
2020
, “Additive Manufacturing for Advanced Commercial Air-Side Heat Exchangers,” Final Report, No. DE-FOA-000119.
You do not currently have access to this content.