Abstract

The authors use computer simulation and experiment to study thermal characteristics of a less expensive design of the air cooling system for transmit/receive modules based on the heat sink with the dimensions of 25 × 324 × 500 mm made of mass-produced heat sink profile. The total power of the 8 transistors in the transmit/receive module is 224 W. It is shown that the increase in air velocity in the heat sink channels from 1 to 30 m/s causes an approximately twofold drop in the maximum temperature of the mounting surface (from 78.45 to 38.70 °C) and a decrease in thermal resistance of the cooling system by 3.16 (from 0.262 to 0.083 °C/W). The air velocity range from 5 to 10 m/s proves to be the most rational option. For the inlet air temperature of 20 °C, the temperature in the spots where the transistors are mounted remains below 56.3 °C for the air velocity of 5.5 m/s in the heat sink channels and below 51.8 °C for 10.5 m/s. A new original technical solution based on low-cost flat gravity heat pipes with a threaded evaporator will provide the efficiency of the cooling system at higher inlet air temperatures.

References

1.
Jarnal
,
A. H.
,
2007
,
Large-Signal Modeling of GaN Device for High Power Amplifier Design
,
Kassel University press GmbH
,
Kassel, Germany
.
2.
Shinohara
,
N.
,
2013
, “
Beam Control Technologies With a High-Efficiency Phased Array for Microwave Power Transmission in Japan
,”
Proceedings of the IEEE
, Vol.
101
(
6
), pp.
1448
1463
.
3.
Pasternack Enterprises, Inc., Irvine, Calif.
,
2017
, “
Radar Technology Advancements and New Applications
,”
Microwave J.
,
60
(
3
), pp.
82
96
.
4.
Sanchez-Barbetty
,
M.
,
2011
, “
Low Cost Electronically Steered Phase Arrays for Weather Applications
,”
Ph.D. thesis
,
University of Massachusetts Amherst
.
5.
Rao
,
J. B. L.
,
Trunk
,
G. V.
, and
Patel
,
D. P.
,
1996
, “
1996 IEEE Two Low-Cost Phased Arrays
,”
Proceedings of International Symposium on Phased Array Systems and Technology
,
Boston, MA
,
Oct. 15–18
, pp.
119
124
.
6.
Rebeiz
,
G. M.
, and
Paulsen
,
L. M.
,
2017
, “
Advances in Low-Cost Phased Arrays Using Silicon Technologies
,”
Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
,
San Diego, CA
,
July 9–14
, pp.
1035
1036
.
7.
Goel
,
P.
, and
Vinoy
,
K.
,
2011
, “
A Low-Cost Phased Array Antenna Integrated With Phase Shifters Cofabricated on the Laminate
,”
Prog. Electromagn. Res. B
,
30
, pp.
255
277
.
8.
Kopp
,
B. A.
,
Borkowski
,
M.
, and
Jerinic
,
G.
,
2002
, “
Transmit/Receive Modules
,”
Proceedings of the IEEE Transactions on Microwave Theory and Techniques
, Vol.
50
(
3
), pp.
827
834
.
9.
Sarcione
,
M.
, and
Puzella
,
A.
,
2010
, “
Technology Trends for Future Low Cost Phased Arrays
,”
Proceedings of the 2010 IEEE MTT-S International Microwave Symposium
,
Anaheim, CA
, pp.
688
690
.
10.
Kopp
,
B. A.
,
Billups
,
A. J.
, and
Luesse
,
M. H.
,
2001
, “
Thermal Analysis and Considerations for Gallium Nitride Microwave Power Amplifier Packaging
,”
Microwave J.
,
44
(
12
), pp.
72
82
.
11.
Rathod
,
S.
,
Sreenivasulu
,
K.
,
Beenamole
,
K. S.
, and
Ray
,
K. P.
,
2018
, “
Evolutionary Trends in Transmit/Receive Module for Active Phased Array Radars
,”
Defence Sci. J.
,
68
(
6
), pp.
553
559
.
12.
Herd
,
J. S.
, and
Conway
,
M. D.
,
2016
, “
The Evolution to Modern Phased Array Architectures
,”
Proceedings of the IEEE
, Vol.
104
(
3
), pp.
519
529
.
13.
Pengelly
,
R. S.
,
Wood
,
S. M.
,
Milligan
,
J. W.
,
Sheppard
,
S. T.
, and
Pribble
,
W. L.
,
2012
, “
A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
,”
IEEE Transactions on Microwave Theory and Techniques
, Vol.
6
(
60
), pp.
1764
1783
.
14.
Choi
,
G. W.
,
Kim
,
H. J.
,
Hwang
,
W. J.
,
Shin
,
S. W.
,
Choi
,
J. J.
, and
Jae
,
S.
,
2009
, “
High Efficiency Class-E Tuned Doherty Amplifier Using GaN HEMT
,”
2009 IEEE MTT-S International Microwave Symposium Digest
,
Boston, MA
,
June 7–12
, pp.
925
928
.
15.
Hosseinizadeh
,
S.
,
Tan
,
F.
, and
Moosania
,
S.
,
2011
, “
Experimental and Numerical Studies on Performance of PCM-Based Heat Sink With Different Configurations of Internal Fins
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3827
3838
.
16.
Wang
,
L.
,
Wang
,
Z.
,
Wang
,
C.
,
Li
,
G.
, and
Yin
,
L.
,
2016
, “
Multiobjective Optimization Method for Multichannel Microwave Components of Active Phased Array Antenna
,”
Math. Probl. Eng
,
2016
,
1
7
.
17.
Nikolaenko
,
Y. E.
,
Baranyuk
,
A. V.
,
Reva
,
S. A.
,
Pis'mennyi
,
E. N.
, and
Dubrovka
,
F. F.
,
2020
, “
Numerical Simulation of the Thermal and Hydraulic Characteristics of the Liquid Heat Exchanger of the APAA Transmitter–Receiver Module
,”
Ther. Sci. Eng. Prog.
,
17
, p.
100499
.
18.
Swadish
,
M. S.
, and
Sangram
,
K. P.
,
2017
, “
Thermal Design and Analysis of an Air Cooled X-Band Active Phased Array Antenna
,”
Proceedings of the 11th International Radar Symposium India-2017 (IRSI-17), NIMHANS Convention Centre
,
Bangalore, India
,
Dec. 12–16
, pp.
1
5
.
19.
Maguire
,
L.
,
Behnia
,
M.
, and
Morrison
,
G.
,
2004
, “
An Experimental and Numerical Study on Heat Spreading Enhancement in High Power Amplifier Heat Sinks
,”
European Microelectronics and Packaging Symposium
,
Prague, Czech Republic
,
June 16–18
, pp.
1
6
.
20.
Maguire
,
L.
,
Behnia
,
M.
, and
Morrison
,
G.
,
2004
, “
Heat Spreading Enhancement in High Power Amplifier Heat Sinks—Comparison of Measurements With Numerical Predictions
,”
J. Microelectron. Electron. Packag.
,
1
(
3
), pp.
117
126
.
21.
Scott
,
M.
,
2003
, “
Sampson MFR Active Phased Array Antenna
,”
IEEE International Symposium on Phased Array Systems and Technology
,
Boston, MA
,
Oct. 14–17
, pp.
119
123
.
22.
Nikolaenko
,
Y. E.
,
Baranyuk
,
A. V.
,
Reva
,
S. A.
, and
Rohachov
,
,
2019
, “
CFD-Modeling of the Temperature Field of the Radiator Casing of the Transmitting Module of the Active Phased Antenna Arrays With Air Cooling
,”
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature.
1–2
, pp.
27
33
. (in Ukrainian).
23.
Nikolaenko
,
Y. E.
,
Baranyuk
,
A. V.
,
Reva
,
S. A.
,
Pis’mennyi
,
E. N.
,
Dubrovka
,
F. F.
, and
Rohachov
,
V. A.
,
2019
, “
Improving Air Cooling Efficiency of Transmit/Receive Modules Through Using Heat Pipes
,”
Ther. Sci. Eng. Prog.
,
14
,
100418
.
24.
Kravets
,
V.
,
Alekseik
,
Y.
,
Alekseik
,
O.
,
Khairnasov
,
S.
,
Baturkin
,
V.
,
Ho
,
T.
, and
Celotti
,
L.
,
2016
, “
Heat Pipes With Variable Thermal Conductance Property Developed for Space Applications
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2613
2620
.
25.
Maziuk
,
V.
,
Kulakov
,
A.
,
Rabetsky
,
M.
,
Vasiliev
,
L.
, and
Vukovic
,
M.
,
2001
, “
Miniature Heat-Pipe Thermal Performance Prediction Tool—Software Development
,”
Appl. Therm. Eng.
,
21
(
5
), pp.
559
571
.
26.
Baturkin
,
V.
,
Feidelheimer
,
V.
,
Sasaki
,
K.
,
Mikulz
,
E.
, and
Ho
,
T.
,
2020
, “
Regulative Characteristic of Methanol–Copper Heat Pipes for Asteroid Lander “MASCOT”
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
5
),
051801
.
27.
Xu
,
J.
, and
Qian
,
J.
,
2020
, “
Research on Heat Transfer Characteristics of Air Cooling Plate Embedded With Heat Pipes
,”
Proceedings of the Seventh Asia International Symposium on Mechatronics, Vol. II
,
LNEE
589
, pp.
509
517
.
28.
Nikolaenko
,
Y. E.
,
Pis’mennyi
,
E. N.
,
Dubrovka
,
F. F.
,
Reva
,
S. A.
,
Baranyuk
,
A. V.
,
Rohachov
,
V. A.
,
Kravets
,
V. Y.
, and
Palamarchuk
,
O. Y.
,
2019
, “
Case of the Active Phased Array Antennas Module
,” Patent of Ukraine No. 139015 (in Ukrainian).
29.
Kalinchak
,
V. V.
,
Orlovskaya
,
S. G.
, and
Chernenko
,
O. S.
,
2012
,
Thermal Conductivity Physics and Experimental Methods for Determining the Thermal Conductivity of a Substance
,
Odesa Mechnikov National University
,
Odesa
,
52
p. (in Ukrainian).
30.
Beletskiy
,
V. M.
, and
Krivov
,
G. A.
,
2005
,
Aluminum Alloys (Composition, Properties, Technology, Application).
Directory. Ed.
Academician I. N.
Friedlander
,
Komintech
,
Kiev
,
365
p. (in. Russian).
31.
Menni
,
Y.
,
Chamkha
,
A. J.
,
Azzi
,
A.
, and
Zidani
,
C.
,
2020
, “
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of New Kind of Vortex Generators by Comparison With Those of Traditional Vortex Generators
,”
Int. J. Fluid Mech. Res.
,
47
(
1
), pp.
23
42
.
32.
Menni
,
Y.
,
Azzi
,
A.
, and
Zidani
,
C.
,
2018
, “
CFD Simulation of Thermo-Aeraulic Fields in a Channel With Multiple Baffle Plates
,”
J. Therm. Eng.
,
4
(
6
), pp.
2481
2495
.
33.
Nikolaenko
,
Y. E.
,
Rotner
,
S. M.
,
Melnyk
,
R. S.
, and
Nikolaienko
,
T. Y.
,
2018
, “
The Use of Films of Metal-Containing Nanocomposites With a Silicon-Carbon Matrix in Thermal Imitators of the Components of Micro- and Nanoelectronics
,”
Proceedings of the 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)
,
Apr. 24–26
,
Igor Sikorsky Kyiv Polytechnic Institute
,
Kyiv, Ukraine
, pp.
36
40
.
34.
Reay
,
D.
, and
Harvey
,
A.
,
2013
, “
The Role of Heat Pipes in Intensified Unit Operations
,”
Appl. Therm. Eng.
,
57
(
1–2
), pp.
147
153
.
35.
Prisniakov
,
K.
,
Marchenko
,
O.
,
Melikaev
,
Y.
,
Kravetz
,
V.
,
Nikolaenko
,
Y.
, and
Prisniakov
,
V.
,
2004
, “
About the Complex Influence of Vibrations and Gravitational Fields on Serviceability of Heat Pipes in Composition of Space-Rocket Systems
,”
Acta Astronautica
,
55
(
3–9
), pp.
509
518
.
36.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2011
, “
A Review of Heat Pipe Application Including New Opportunities
,”
Front. Heat Pipes
,
2
(
1
), p.
013001
.
37.
Abdulshaheed
,
A. A.
,
Wang
,
P.
,
Huang
,
G.
,
Zhao
,
Y.
, and
Li
,
C.
,
2021
, “
Filling Ratio Optimization for High-Performance Nanoengineered Copper-Water Heat Pipes
,”
ASME J. Thermal Sci. Eng. Appl.
,
13
(
5
), p.
051025
.
38.
Nekrashevych
,
I.
, and
Nikolayev
,
V.
,
2019
, “
Pulsating Heat Pipe Simulations: Impact of PHP Orientation
,”
Microgravity Sci. Technol.
,
31
(
3
), pp.
241
248
.
39.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
,
Sorokin
,
V. M.
,
Кravets
,
V. Y.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Solomakha
,
A. S.
,
2021
, “
Experimental Study on Characteristics of Gravity Heat Pipe With Threaded Evaporator
,”
Ther. Sci. Eng. Prog.
,
26
, p.
101107
.
40.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
12
), p.
123001
.
41.
Guichet
,
V.
,
Almahmoud
,
S.
, and
Jouhara
,
H.
,
2019
, “
Nucleate Pool Boiling Heat Transfer in Wickless Heat Pipes (Two-Phase Closed Thermosyphons): A Critical Review of Correlations
,”
Therm. Sci. Eng. Prog.
,
13
, p.
100384
.
42.
Solomon
,
A. B.
,
Daniel
,
V. A.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
,
Singhd
,
R. R.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2017
, “
Performance Enhancement of a Two-Phase Closed Thermosiphon With a Thin Porous Copper Coating
,”
Int. Commun. Heat Mass Transfer
,
82
, pp.
9
19
.
43.
Jouhara
,
H.
, and
Robinson
,
A. J.
,
2010
, “
Experimental Investigation of Small Diameter Two-Phase Closed Thermosyphons Charged With Water, FC-84, FC-77 and FC-3283
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
201
211
.
44.
Solomon
,
A. B.
,
Roshan
,
R.
,
Vincent
,
W.
,
Karthikeyan
,
V. K.
, and
Asirvatham
,
L. G.
,
2015
, “
Heat Transfer Performance of an Anodized Two-Phase Closed Thermosyphon With Refrigerant as Working Fluid
,”
Int. J. Heat Mass Transfer
,
82
, pp.
521
529
.
45.
Bulut
,
M.
,
Kandlikar
,
S. G.
, and
Sozbir
,
N.
,
2019
, “
A Review of Vapor Cambers
,”
Heat Transfer Eng.
,
40
(
19
), pp.
1551
1573
.
46.
Siedel
,
S.
,
Robinson
,
A. J.
,
Kempers
,
R.
, and
Kerslake
,
S.
,
2014
, “
Development of a Naturally Aspired Thermosyphon for Power Amplifier Cooling
,”
J. Phys. Conf. Ser.
,
525
, p.
012007
.
47.
Riele
,
G. J.
, and
Wits
,
W. W.
,
2019
, “
Heat Pipe Array for Planar Cooling of Rotating Radar Systems
,”
ASME J. Heat Transfer
,
141
(
9
), p.
091810
. (Paper No: HT-18-1606).
48.
Aslan
,
Y.
,
Kiper
,
C. E.
,
Biggelaar
,
A. J.
,
Johannsen
,
U.
, and
Yarovoy
,
A.
,
2019
, “
Passive Coling of mm-Wave Active Integrated 5G Base Station Antennas Using CPU Heatsinks
,”
Proceedings of the 2019 16th European Radar Conference (EuRAD)
,
Paris, France
,
Oct. 2–4
, pp.
121
124
.
49.
Tuz
,
V. O.
, and
Lebed
,
N. L.
,
2021
, “
Heat and Mass Transfer During Adiabatic Fluid Boiling in Channels of Contact Exchangers
,”
Appl. Therm. Eng.
,
185
, p.
116383
.
50.
Nikolaenko
,
Y.
,
Kravets
,
E.
,
Yu
,
V.
,
Kozak
,
D. V.
,
Solomakha
,
A. S.
,
Pekur
,
D. V.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Reva
,
S. A.
,
2021
, “
Case of the Array Antennas T/R Module
,” Patent of Ukraine No. 147733 (in Ukrainian).
51.
Pekur
,
D. V.
,
Sorokin
,
V. M.
, and
Nikolaenko
,
Y. E.
,
2020
, “
Thermal Characteristics of a Compact LED Luminaire With a Cooling System Based on Heat Pipes
,”
Ther. Sci. Eng. Prog.
,
18
,
100549
.
52.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
, and
Sorokin
,
V. M.
,
2019
, “
Light Characteristics of High-Power LED Luminaire With a Cooling System Based on Heat Pipe
,”
Semicond. Phys. Quantum Electron. Optoelectron.
,
22
(
3
), pp.
366
371
.
53.
Pekur
,
D. V.
,
Nikolaenko
,
Y. E.
, and
Sorokin
,
V. M.
,
2020
, “
Optimization of the Cooling System Design for a Compact High-Power LED Luminaire
,”
Semicond. Phys., Quantum Electron. Optoelectron.
,
23
(
1
), pp.
91
101
.
54.
Pekur
,
D. V.
,
Sorokin
,
V. M.
, and
Nikolaenko
,
Y. E.
,
2021
, “
Features of Wall-Mounted Luminaires With Different Types of Light Sources
,”
Electrica
,
21
(
1
), pp.
32
40
.
55.
Pekur
,
D. V.
,
Sorokin
,
V. M.
,
Nikolaenko
,
Y. E.
,
Kostylyov
,
V. P.
,
Solntsev
,
V. S.
, and
Ponomarenko
,
V. V.
,
2020
, “
Electro-Optical Characteristics of an Innovative LED Luminaire With an LED Matrix Cooling System Based on Heat Pipes
,”
Semicond. Phys., Quantum Electron. Optoelectron.
,
23
(
4
), pp.
415
423
.
56.
Nikolaenko
,
Y. E.
,
Alekseik
,
E. S.
,
Kozak
,
D. V.
, and
Nikolaienko
,
T. Y.
,
2018
, “
Research on Two-Phase Heat Removal Devices for Power Electronics
,”
Therm. Sci. Eng. Progress
,
8
, pp.
418
425
.
57.
Kozak
,
D. V.
, and
Nikolaenko
,
Y. Е.
,
2016
, “
The Working Characteristics of Two-Phase Heat Transfer Devices for LED Modules
,”
IEEE International Conference on Electronics and Information Technology, EIT 2016 Conference Proceeding
,
Ukraine, Odessa
,
May 23–27, 2016
, pp.
10
13
.
58.
Nikolaenko
,
Y. E.
, and
Rogachev
,
V. A.
2019
, “
Method of Manufacturing Gravitational Heat Pipes
,” Patent of Ukraine No. 133241 (in Ukrainian).
59.
Khodabandeh
,
R.
, and
Palm
,
B.
,
2002
, “
An Experimental Investigation of the Influence of Threaded Surface on the Boiling Heat Transfer Coefficients in Vertical Narrow Channels
,”
Microsc. Thermophys. Eng.
,
6
(
2
), pp.
131
139
.
60.
Duan
,
L.
,
Wang
,
Z.
,
Chen
,
G.
,
Tang
,
Y.
,
Sun
,
Y.
,
Zhong
,
G.
,
Xi
,
X.
, and
Xu
,
Y.
,
2021
, “
Capillary Wicking in Double-Scale Composite Microgroove Wicks for Copper-Aluminum Composite Vapor Chambers
,”
Int. Commun. Heat Mass Transf.
,
126
(
4
), p.
105449
.
You do not currently have access to this content.