Abstract

Electric rotary kiln is one of the key equipment in the chemical industry, which is mainly used for heating materials. In the current research, the heat calculation method of the electric rotary alumina kiln is constructed, and the heat transfer processes in the furnace, the furnace tube, and the furnace tube wall are systematically analyzed. The theoretical model of the electric rotary alumina kiln is established and solved by the fourth-order Runge–Kutta method, and the temperature rise curves in the kiln are obtained. The numerical simulation is carried out to investigate the temperature distribution of materials and gases in the furnace tube. It is revealed in the results that the temperature distribution of the electric rotary alumina kiln is more uniform than that of the internal rotary kiln, and the stable operation state can be reached in a very short time, which means that reduced furnace tube length and reduced production cost can be achieved under the same roasting requirements.

References

1.
Gailani
,
A.
,
Al-sallami
,
W.
, and
Imran
,
N. H.
,
2015
, “
The Current World Energy Situation and Suggested Future Energy Scenarios to Meet the Energy Challenges by 2050 in the UK
,”
Int. J. Sustainable Green Energy
,
4
(
6
), pp.
212
218
.
2.
Sogut
,
Z.
Oktay
,
Z
, and
Karakoc
,
H
,
2010
, “
Mathematical Modeling of Heat Recovery From a Rotary Kiln
.”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
817
825
.
3.
Brimacombe
,
J. K.
, and
Watkinson
,
A. P.
,
1978
, “
Heat Transfer in a Direct-Fired Rotary Kiln: I. Pilot Plant and Experimentation
,”
Metall. Trans. B
,
9
(
2
), pp.
201
208
.
4.
Watkinson
,
A. P.
, and
Brimacombe
,
J. K.
,
1978
, “
Heat Transfer in a Direct-Fired Rotary Kiln: II. Heat Flow Results and Their Interpretation
,”
Metall. Trans. B
,
9
(
2
), pp.
209
219
.
5.
Tscheng
,
S. H.
, and
Watkinson
,
A. P.
,
1979
, “
Convective Heat Transfer in a Rotary Kiln
,”
Can. J. Chem. Eng.
,
57
(
4
), pp.
433
443
.
6.
Gorog
,
J. P.
,
Brimacombe
,
J. K.
, and
Adams
,
T. N.
,
1981
, “
Radiative Heat Transfer in Rotary Kilns
,”
Metall. Trans. B
,
12
(
1
), pp.
55
70
.
7.
Silcox
,
G. D.
, and
Perching
,
D. W.
,
1990
, “
The Effects of Rotary Kiln Operating Conditions and Design on Burden Heating Rates as Determined by a Mathematical Model of Rotary Kiln Heat Transfer
,”
J. Air Waste Manage. Assoc.
,
40
(
3
), pp.
337
344
.
8.
Mujumdar
,
K. S.
, and
Ranade
,
V. V.
,
2006
, “
Simulation of Rotary Cement Kilns Using a One-Dimensional Model
,”
Chem. Eng. Res. Des.
,
84
(
3
), pp.
165
177
.
9.
Ginsberg
,
T.
, and
Modigell
,
M.
,
2011
, “
Dynamic Modelling of a Rotary Kiln for Calcination of Titanium Dioxide White Pigment
,”
Comput. Chem. Eng.
,
35
(
11
), pp.
2437
2446
.
10.
Csernyei
,
C.
, and
Straatman
,
A. G.
,
2016
, “
Numerical Modeling of a Rotary Cement Kiln With Improvements to Shell Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
610
621
.
11.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
,
1993
, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
,
77
(
1
), pp.
79
87
.
12.
Boateng
,
A. A.
, and
Barr
,
P. V.
,
1996
, “
A Thermal Model for the Rotary Kiln Including Heat Transfer Within the Bed
,”
Int. J. Heat Mass Transfer
,
39
(
10
), pp.
2131
2147
.
13.
Boateng
,
A. A.
, and
Barr
,
P. V.
,
1996
, “
Modelling of Particle Mixing and Segregation in the Transverse Plane of a Rotary Kiln
,”
Chem. Eng. Sci.
,
51
(
17
), pp.
4167
4181
.
14.
Boateng
,
A. A.
,
1998
, “
Boundary Layer Modeling of Granular Flow in the Transverse Plane of a Partially Filled Rotating Cylinder
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
499
521
.
15.
Guo
,
B.
,
Zulli
,
P.
,
Rogers
,
H.
,
Mathieson
,
J. G.
, and
Yu
,
A.
,
2005
, “
Three-Dimensional Simulation of Flow and Combustion for Pulverised Coal Injection
,”
ISIJ Int.
,
45
(
9
), pp.
1272
1281
.
16.
Kwapinska
,
M.
,
Saage
,
G.
, and
Tsotsas
,
E.
,
2008
, “
Continuous Versus Discrete Modelling of Heat Transfer to Agitated Beds
,”
Powder Technol.
,
181
(
3
), pp.
331
342
.
17.
Hobbs
,
A.
,
2009
, “
Simulation of an Aggregate Dryer Using Coupled CFD and DEM Methods
,”
Int. J. Comput. Fluid Dyn.
,
23
(
2
), pp.
199
207
.
18.
Chaudhuri
,
B.
,
Muzzio
,
F. J.
, and
Tomassone
,
M. S.
,
2010
, “
Experimentally Validated Computations of Heat Transfer in Granular Materials in Rotary Calciners
,”
Powder Technol.
,
198
(
1
), pp.
6
15
.
19.
Manju
,
M. S.
, and
Savithri
,
S.
,
2012
, “
Three Dimensional CFD Simulation of Pneumatic Coal Injection in a Direct Reduction Rotary Kiln
,”
Fuel
,
102
, pp.
54
64
.
20.
Gui
,
N.
,
Yan
,
J.
,
Xu
,
W.
,
Ge
,
L.
,
Wu
,
D.
,
Ji
,
Z.
, and
Yang
,
X.
,
2013
, “
DEM Simulation and Analysis of Particle Mixing and Heat Conduction in a Rotating Drum
,”
Chem. Eng. Sci.
,
97
, pp.
225
234
.
21.
Yi
,
Z.
,
Du
,
B.
,
Zeng
,
Z.
,
Ma
,
G.
, and
Zhou
,
J.
,
2014
, “
Numerical Simulation of Flow and Heat Transfer in Alumina Rotary Kiln
,”
Non-Ferrous Met. (Extr. Metall.)
,
2014
(
10
), pp.
27
31
.
22.
Song
,
X. Y.
, and
Fan
,
Q.
,
2013
, “
The Analysis of Rotary Kiln Thermal Characteristics Based on ANSYS and FLUENT
.”
Advanced Materials Research, Trans Tech Publications, Ltd
., Vols.
834–836
, p.
1523
1528
.
23.
Komossa
,
H.
,
Wirtz
,
S.
,
Scherer
,
V.
,
Herz
,
F.
, and
Specht
,
E.
,
2015
, “
Heat Transfer in Indirect Heated Rotary Drums Filled With Monodisperse Spheres: Comparison of Experiments With DEM Simulations
,”
Powder Technol.
,
286
, pp.
722
731
.
24.
Emady
,
H. N.
,
Anderson
,
K. V.
,
Borghard
,
W. G.
,
Muzzio
,
F. J.
,
Glasser
,
B. J.
, and
Cuitino
,
A.
,
2016
, “
Prediction of Conductive Heating Time Scales of Particles in a Rotary Drum
,”
Chem. Eng. Sci.
,
152
, pp.
45
54
.
25.
Gorog
,
J. P.
,
Adams
,
T. N.
, and
Brimacombe
,
J. K.
,
1982
, “
Regenerative Heat Transfer in Rotary Kilns
,”
Metall. Trans. B
,
13
(
2
), pp.
153
163
.
26.
Tarasov
,
V. E.
,
2005
, “
Continuous Medium Model for Fractal Media
,”
Phys. Lett. A
,
336
(
2–3
), pp.
167
174
.
27.
Tarasov
,
V. E.
,
2005
, “
Possible Experimental Test of Continuous Medium Model for Fractal Media
,”
Phys. Lett. A
,
341
(
5–6
), pp.
467
472
.
28.
Nayagum
,
D.
,
Schäfer
,
G.
, and
Mosé
,
R.
,
2004
, “
Modelling Two-Phase Incompressible Flow in Porous Media Using Mixed Hybrid and Discontinuous Finite Elements
,”
Comput. Geosci.
,
8
(
1
), pp.
49
73
.
29.
Fang
,
Y.
,
Nguyen
,
B. N.
,
Carroll
,
K.
,
Xu
,
Z.
,
Yabusaki
,
S. B.
,
Scheibe
,
T. D.
, and
Bonneville
,
A.
,
2013
, “
Development of a Coupled Thermo-hydro-mechanical Model in Discontinuous Media for Carbon Sequestration
,”
Int. J. Rock Mech. Min. Sci.
,
62
, pp.
138
147
.
30.
Carpenter
,
M. H.
,
Kennedy
,
C. A.
,
Bijl
,
H.
,
Viken
,
S. A.
, and
Vatsa
,
V. N.
,
2005
, “
Fourth-Order Runge-Kutta Schemes for Fluid Mechanics Applications
,”
J. Sci. Comput.
,
25
(
1
), pp.
157
194
.
You do not currently have access to this content.