Abstract

The augmentation of boiling heat transfer has been a dynamic domain of research for the past several decades due to a wide range of energy intensive applications and, in line, many active and passive methods have been developed. The present study discusses the effect of ultrasonic field of 31 kHz and 40 kHz on the saturated pool boiling of R141b over plain Cu surface at different operating pressures. It was found that the ultrasonic field is more effective at higher operating pressures. The surface superheat reduced by a maximum value of 2.6 °C with the application of 31 kHz ultrasonic field in comparison to the pool boiling without ultrasonic field application for +30 kPa(g) operating pressure at lower heat flux level of 113 kW/m2. The maximum augmentation in heat transfer coefficient was calculated as 37.1% and 11.4% for frequency of 31 kHz and 40 kHz, respectively, with respect to the no ultrasonic field condition at +30 kPa(g) for lower heat flux level of 113 kW/m2. The Nusselt number was found to be increasing in the sub-atmospheric as well as the pressurized operating pressure range. In comparison to the boiling without application of ultrasonic field, the maximum improvement in Nusselt number was noted as 25.3% at 31 kHz frequency of ultrasonic field and +30 kPa(g) operating conditions. This study suggests the use of lower frequency range of ultrasonic field in the presence of higher operating pressures for higher augmentation in saturated pool boiling.

References

1.
Carey
,
V. P.
,
2018
,
Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
CRC Press
,
Boca Raton, FL
.
2.
Swarnkar
,
Abhishek
, and
Lakhera
,
Vikas
,
2020
, “
Ultrasonic Augmentation in Pool Boiling Heat Transfer over External Surfaces: A Review
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
11
), pp.
2099
2111
.
3.
Baffigi
,
F.
, and
Bartoli
,
C.
,
2010
, “
Heat Transfer Enhancement From a Circular Cylinder to Distilled Water by Ultrasonic Waves at Different Sub Cooling Degrees
,”
Proceedings of the 14th International Heat Transfer Conference, IHTC14
,
Washington, DC
,
Aug. 8–13
, pp.
1
7
.
4.
Baffigi
,
F.
, and
Bartoli
,
C.
,
2011
, “
Effects of Ultrasounds on the Heat Transfer Enhancement From a Circular Cylinder to Distilled Water in Subcooled Boiling
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
1
), p.
011001
.
5.
Baffigi
,
F.
, and
Bartoli
,
C.
,
2012
, “
Influence of the Ultrasounds on the Heat Transfer in Single Phase Free Convection and in Saturated Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
12
21
.
6.
Bartoli
,
C.
, and
Baffigi
,
F.
,
2011
, “
Effects of Ultrasonic Waves on the Heat Transfer Enhancement in Subcooled Boiling
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
423
432
.
7.
Zheng
,
M.
,
Li
,
B.
,
Wan
,
Z.
,
Wu
,
B.
,
Tang
,
Y.
, and
Li
,
J.
,
2016
, “
Ultrasonic Heat Transfer Enhancement on Different Structural Tubes in LiBr Solution
,”
Appl. Therm. Eng.
,
106
, pp.
625
633
.
8.
Li
,
B.
,
Han
,
X.
,
Wan
,
Z.
,
Wang
,
X.
, and
Tang
,
Y.
,
2016
, “
Influence of Ultrasound on Heat Transfer of Copper Tubes With Different Surface Characteristics in Sub-Cooled Boiling
,”
Appl. Therm. Eng.
,
92
, pp.
93
103
.
9.
Krishnan
,
S.
,
Das
,
S. K.
, and
Chatterjee
,
D.
,
2013
, “
Physics of the Interaction of Ultrasonic Excitation With Nucleate Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
3
), p.
031501
.
10.
Hao
,
Y.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
2001
, “
The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles
,”
Phys. Fluids
,
13
(
5
), pp.
1167
1177
.
11.
Yamashiro
,
H.
,
Takamatsu
,
H.
, and
Honda
,
H.
,
1998
, “
Effect of Ultrasonic Vibration on Transient Boiling Heat Transfer During Rapid Quenching of a Thin Wire in Water
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
282
285
.
12.
Park
,
K. A.
, and
Bergles
,
A. E.
,
1988
, “
Ultrasonic Enhancement of Saturated and Subcooled Pool Boiling
,”
Int. J. Heat Mass Transfer
,
31
(
3
), pp.
664
667
.
13.
Tang
,
J.
,
Yan
,
C.
, and
Sun
,
L.
,
2015
, “
Effects of Noncondensable Gas and Ultrasonic Vibration on Vapor Bubble Condensing and Collapsing
,”
Exp. Therm. Fluid Sci.
,
61
(
C
), pp.
210
220
.
14.
Sitter
,
J. S.
,
Snyder
,
T. J.
, and
Marston
,
J. N. C.
,
1998
, “
Acoustic Field Interaction With a Boiling System Under Terrestrial Gravity and Microgravity
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2143
2155
.
15.
Moehrle
,
R. E.
, and
Chung
,
J. N.
,
2016
, “
Pool Boiling Heat Transfer Driven by an Acoustic Standing Wave in Terrestrial Gravity and Microgravity
,”
Int. J. Heat Mass Transfer
,
93
, pp.
322
336
.
16.
Boziuk
,
T.
,
Smith
,
M.
, and
Glezer
,
A.
,
2016
, “
Enhanced Boiling Heat Transfer on Micromachined Surfaces Using Acoustic Actuation
,”
2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 31–June 3
, pp.
994
1001
.
17.
Hetsroni
,
G.
,
Moldavsky
,
L.
,
Fichman
,
M.
,
Pogrebnyak
,
E.
, and
Mosyak
,
A.
,
2014
, “
Ultrasonic Enhancement of Subcooled Pool Boiling of Freely Oscillated Wires
,”
Int. J. Multiph. Flow
,
67
(
S
), pp.
13
21
.
18.
Mosyak
,
A.
,
Hetsroni
,
G.
,
Fichman
,
M.
,
Moldavsky
,
L.
, and
Pogrebnyak
,
E.
,
2016
, “
Effect of Heater Size on Ultrasonic Enhancement of Boiling in Water and Surfactant Solutions
,”
Int. J. Multiph. Flow
,
79
, pp.
181
189
.
19.
Zhou
,
D. W.
, and
Liu
,
D. Y.
,
2002
, “
Boiling Heat Transfer in Acoustic Cavitation Field
,”
Chin. J. Chem. Eng.
,
10
(
5
), pp.
625
629
.
20.
Kim
,
H. Y.
,
Kim
,
Y. G.
, and
Kang
,
B. H.
,
2004
, “
Enhancement of Natural Convection and Pool Boiling Heat Transfer Via Ultrasonic Vibration
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2831
2840
.
21.
Perminov
,
S. A.
, and
Ermakov
,
G. V.
,
2010
, “
Boiling-Up of Superheated Water and Water Solutions Under Ultrasound Influence
,”
Thermophys. Aeromech.
,
17
(
1
), pp.
107
112
.
22.
Iida
,
Y.
, and
Tsutsui
,
K.
,
1992
, “
Effects of Ultrasonic Waves on Natural Convection, Nucleate Boiling, and Film Boiling Heat Transfer From a Wire to a Saturated Liquid
,”
Exp. Therm. Fluid Sci.
,
5
(
1
), pp.
108
115
.
23.
Wong
,
S. W.
, and
Chon
,
W. Y.
,
1969
, “
Effects of Ultrasonic Vibrations on Heat Transfer to Liquids by Natural Convection and by Boiling
,”
AIChE J.
,
15
(
2
), pp.
281
288
.
24.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.
25.
Dahariya
,
S.
, and
Betz
,
A. R.
,
2019
, “
High Pressure Pool Boiling: Mechanisms for Heat Transfer Enhancement and Comparison to Existing Models
,”
Int. J. Heat Mass Transfer
,
141
, pp.
696
706
.
26.
Swarnkar
,
A.
, and
Lakhera
,
V. J.
,
2021
, “
Pressure Influence on Saturated Boiling of R141b Over Cu and Si-Coated Surfaces
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
236
(
2
), pp.
512
524
.
27.
Sakashita
,
H.
, and
Ono
,
A.
,
2009
, “
Boiling Behaviors and Critical Heat Flux on a Horizontal Plate in Saturated Pool Boiling of Water at High Pressures
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
744
750
.
28.
Sakashita
,
H.
,
2011
, “
Bubble Growth Rates and Nucleation Site Densities in Saturated Pool Boiling of Water at High Pressures
,”
J. Nucl. Sci. Technol.
,
48
(
5
), pp.
734
743
.
29.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientation, and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5199
5208
.
30.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous, Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
23
35
.
31.
Giraud
,
F.
,
Rullière
,
R.
,
Toublanc
,
C.
,
Clausse
,
M.
, and
Bonjour
,
J.
,
2016
, “
Subatmospheric Pressure Boiling on a Single Nucleation Site in Narrow Vertical Spaces
,”
Int. J. Heat Fluid Flow
,
58
, pp.
1
10
.
32.
Li
,
N.
, and
Rachel Betz
,
A.
,
2017
, “
Boiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
111504
.
33.
Abuaf
,
N.
,
Black
,
S. H.
, and
Staub
,
F. W.
,
1985
, “
Pool Boiling Performance of Finned Surfaces in R-113
,”
Int. J. Heat Fluid Flow
,
6
(
1
), pp.
23
30
.
34.
Bobrovich
,
G. I.
, and
Mamontova
,
N. N.
,
1965
, “
A Study of the Mechanism of Nucleate Boiling at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
8
(
11
), pp.
1421
1424
.
35.
Gorenflo
,
D.
, and
Kenning
,
D.
,
2010
,
VDI Heat Atlas Part-H2
,
Springer
,
New York
.
36.
Gorenflo
,
D.
,
Baumhögger
,
E.
,
Windmann
,
T.
, and
Herres
,
G.
,
2010
, “
Nucleate Pool Boiling, Film Boiling and Single-Phase Free Convection at Pressures up to the Critical State. Part I: Integral Heat Transfer for Horizontal Copper Cylinders
,”
Int. J. Refrig.
,
33
(
7
), pp.
1229
1250
.
37.
Tubular Exchanger Manufacturers Association Inc.
,
2007
,
Standards of the Tubular Exchanger Manufacturers Association
,
Tubular Exchanger Manufacturers Association Inc.
,
New York
.
38.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
39.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill Publications
,
New York
.
40.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
(
C
), pp.
157
239
.
41.
Borishanskii
,
V. M.
,
1969
, “Correlation of the Effect of Pressure on the Critical Heat Flux and Heat Transfer Rates using the Theory of Thermodynamic Similarity,”
Problems of Heat Transfer and Hydraulics of Two-Phase Media
,
S. S.
Kutateladze
, ed.,
Pergamon Press
,
New York
, pp.
16
37
.
42.
Mostinski
,
I. L.
,
1963
, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Teploenergetika
,
4
(
4
), pp.
66
71
.
43.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
1994
, “
Pool Boiling Heat Transfer of Dielectric Fluids for Immersion Electronic Cooling: Effects of Pressure
,”
Proceedings of EUROTHERM Seminar 29
,
Delft, The Netherlands
,
June 14–16
, pp.
243
253
.
44.
Hueter
,
T. F.
, and
Bolt
,
R. H.
,
1955
,
Sonics: Techniques for the Use of Sound and Ultrasound in Engineering and Science
,
Wiley
,
New York
.
45.
Hetsroni
,
G.
,
Moldavsky
,
L.
,
Mosyak
,
A.
, and
Fichman
,
M.
,
2013
, “
Effect of Wire Diameter on Ultrasonic Enhancement of Subcooled Pool Boiling
,”
9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Malta
,
July 16–18
, pp.
1358
1363
.
46.
Kutateladze
,
S. S.
, and
Gogonin
,
I. I.
,
1979
, “
Growth Rate and Detachment Diameter of a Vapor Bubble in Free Convection Boiling of a Saturated Liquid
,”
Teplofiz. Vysok. Temp.
,
17
, pp.
792
797
.
You do not currently have access to this content.