Abstract

Though the interaction between cardiovascular functions and thermoregulation is enormously complex yet immensely important, very little effort to date has been spent to simulate it from a system point of view. The present work aims at simulating the mutual interaction of human thermoregulation and cardiovascular functions by combining simple models of these two systems. While for thermoregulation, a lumped parameter multi-node model has been developed, a SIMULINK-based approach of electrical analogy has been taken for the cardiovascular system. These two models are coupled by different physiological and control actions, represented by well-established correlations. Three case studies have been conducted. In the first case, thermoregulation of a healthy human being is considered for a prescribed temperature cycle of moderate variation. Under heat stress, cardiac output increases by a joint effect of heart rate and stroke volume while under the cold condition, the variation of the cardiac output is less and is primarily governed by the heart rate. For the case of a reduced ejection fraction of the left ventricle, though there is a notable decrease in skin blood flow, negligible variation in skin and core temperature is observed. In the case of acute aortic stenosis, it is found that the blood pressure falls severely from its normal level causing hypotension and is further aggravated even under moderate heat stress. Such a situation might have further consequences like heat stroke. Finally, the limitations of the present study have been highlighted and suggestions have been made for further improvement.

References

1.
Braian
,
M. B.
,
Camila
,
C.
,
Antonella De
,
V.
, and
Carlos
,
G. M.
,
2018
, “
Human Physiology in Extreme Heat and Cold
,”
Int. Arch. Clin. Physiol.
,
1
(
1
), pp.
1
8
.
2.
Lim
,
C. L.
,
Byrne
,
C.
, and
Lee
,
J. K.
,
2008
, “
Human Thermoregulation and Measurement of Body Temperature in Exercise and Clinical Settings
,”
Ann. Acad. Med. Singapore
,
37
(
4
), pp.
347
353
.
3.
Gagge
,
A. P.
,
Stolwijk
,
J. A. J.
, and
Nishi
,
Y. M.
,
1971
, “
An Effective Temperature Scale Based on a Simple Model of Human Physiological Regularity Response
,”
ASHRAE Trans.
,
7
(
77
), pp.
247
262
.
4.
Givoni
,
B.
, and
Goldman
,
R. F.
,
1972
, “
Predicting Rectal Temperature Response to Work, Environment, and Clothing
,”
J. Appl. Physiol.
,
32
(
6
), pp.
812
822
.
5.
Wissler
,
E. H.
,
1964
, “
A Mathematical Model of the Human Thermal System
,”
Bull. Math. Biophys.
,
26
(
2
), pp.
147
166
.
6.
Havenith
,
G.
,
2001
, “
Individualized Model of Human Thermoregulation for the Simulation of Heat Stress Response
,”
J. Appl. Physiol.
,
90
(
5
), pp.
1943
1954
.
7.
Stolwijk
,
J. A.
,
1971
, “
A Mathematical Model of Physiological Temperature Regulation in Man
,” National Aeronautics and Space Administration, https://ntrs.nasa.gov/api/citations/19710023925/downloads/19710023925.pdf
8.
Hwang
,
C. L.
, and
Konz
,
S. A.
,
1977
, “
Engineering Models of the Human Thermoregulatory System–A Review
,”
IEEE Trans. Biomed. Eng.
,
BME-24
(
4
), pp.
309
325
.
9.
Kuznetz
,
L. H.
,
1979
, “
A Two-Dimensional Transient Mathematical Model of Human Thermoregulation
,”
Am. J. Physiol.—Regul. Integr. Comp. Physiol.
,
6
(
3
), pp.
266
277
.
10.
Li
,
B.
,
Yang
,
Y.
,
Yao
,
R.
,
Liu
,
H.
, and
Li
,
Y.
,
2017
, “
A Simplified Thermoregulation Model of the Human Body in Warm Conditions
,”
Appl. Ergon.
,
59
(
Part A,
), pp.
387
400
.
11.
Djongyang
,
N.
,
Tchinda
,
R.
, and
Njomo
,
D.
,
2010
, “
Thermal Comfort: A Review Paper
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
2626
2640
.
12.
McCafferty
,
D. J.
,
Pandraud
,
G.
,
Gilles
,
J.
,
Fabra-Puchol
,
M.
, and
Henry
,
P. Y.
,
2018
, “
Animal Thermoregulation: A Review of Insulation, Physiology and Behaviour Relevant to Temperature Control in Buildings
,”
Bioinspir, Biomim.
,
13
(
1
), p.
011001
.
13.
Rowell
,
L. B.
,
Brengelmann
,
G. L.
, and
Murray
,
J. A.
,
1969
, “
Cardiovascular Responses to Sustained High Skin Temperature in Resting Man
,”
J. Appl. Physiol.
,
27
(
5
), pp.
673
680
.
14.
Rowell
,
L. B.
,
2017
, “
Human Cardiovascular Adjustments to Exercise and Thermal Stress
,”
Physiol. Rev.
,
54
(
1
), pp.
75
159
.
15.
Balmain
,
B. N.
,
Sabapathy
,
S.
,
Jay
,
O.
,
Adsett
,
J.
,
Stewart
,
G. M.
,
Jayasinghe
,
R.
, and
Morris
,
N. R.
,
2017
, “
Heart Failure and Thermoregulatory Control: Can Patients With Heart Failure Handle the Heat?
,”
J. Card. Fail.
,
23
(
8
), pp.
621
627
.
16.
Unnikrishnan
,
G.
,
Hatwar
,
R.
,
Hornby
,
S.
,
Laxminarayan
,
S.
,
Gulati
,
T.
,
Belval
,
L. N.
,
Giersch
,
G. E. W.
,
Kazman
,
J. B.
,
Casa
,
D. J.
, and
Reifman
,
J.
,
2021
, “
A 3-D Virtual Human Thermoregulatory Model to Predict Whole-Body and Organ-Specific Heat-Stress Responses
,”
Eur. J. Appl. Physiol.
,
121
(
9
), pp.
2543
2562
.
17.
Takahashi
,
Y.
,
Oata
,
M.
,
Jun-Ichi
,
A.
,
Nomoto
,
A.
, and
Shin-Ichi
,
T.
,
2019
, “
Coupling of a Cardiovascular Model With a Thermoregulation Model to Predict Human Blood Pressure Under Unsteady Environmental Conditions
,”
E3S Web Conf.
,
111
(
02062
), pp.
4
7
.
18.
Deyranlou
,
A.
,
Revell
,
A.
, and
Keshmiri
,
A.
,
2021
,
A Coupled Flow-Thermoregulation Lumped Model to Investigate Cardiac Function
,”
bioRxiv
. https://www.biorxiv.org/content/10.1101/2021.05.02.442367v1.full
19.
Fanger
,
P. O.
,
1967
, “
Calculation of Thermal Comfort: Introduction of a Basic Comfort Equation
,”
ASHRAE Trans.
,
73
(
2
), pp.
1
20
.
20.
Baker
,
P. T.
,
1956
, “
Man in a Cold Environment. By A. C. Burton and O. G. Edholm, Edward Arnold Ltd., London, 1955. Man in Cold Environment: A Study in Physiology. By Loren D. Carlson, Alaskan Air Command, Arctic Aeromedical Laboratory, Ladd Air Force Base, Fairbanks, Alaska
,”
Am. J. Phys. Anthropol.
,
14
(
2
), pp.
337
339
.
21.
Werner
,
J.
, and
Buse
,
M.
,
1988
, “
Temperature Profiles With Respect to Inhomogeneity and Geometry of the Human Body
,”
J. Appl. Physiol.
,
65
(
3
), pp.
1110
1118
.
22.
Saltin
,
B.
,
Gagge
,
A. P.
, and
Stolwijk
,
J. A.
,
1970
, “
Body Temperatures and Sweating During Thermal Transients Caused by Exercise
,”
J. Appl. Physiol.
,
28
(
3
), pp.
318
327
.
23.
Hardy
,
J. D.
, and
Stolwijk
,
J. A.
,
1966
, “
Partitional Calorimetric Studies of Man During Exposures to Thermal Transients
,”
J. Appl. Physiol.
,
21
(
6
), pp.
1799
1806
.
24.
Bullard
,
R. W.
,
Banerjee
,
M. R.
,
Chen
,
F.
, and
M
,
R. E. B. A.
,
1970
, “
Skin Temperature and Thermoregulatory Sweating: A Control System Approach
,”
Physiol. Behav. Temp. Regul.
, pp.
597
610
.
25.
Segers
,
P.
,
Stergiopulos
,
N.
,
Westerhof
,
N.
,
Wouters
,
P.
,
Kolh
,
P.
, and
Verdonck
,
P.
,
2003
, “
Systematic and Pulmonary Hemodynamics Assessed With a Lumped-Parameter Heart-Arterial Interaction Model
,”
J. Eng. Math.
,
47
(
3–4
), pp.
185
199
.
26.
Wilson
,
T. E.
,
Sauder
,
C. L.
,
Kearney
,
M. L.
,
Kuipers
,
N. T.
,
Leuenberger
,
U. A.
,
Monahan
,
K. D.
, and
Ray
,
C. A.
,
2007
, “
Skin-Surface Cooling Elicits Peripheral and Visceral Vasoconstriction in Humans
,”
J. Appl. Physiol.
,
103
(
4
), pp.
1257
1262
.
27.
Wilson
,
T. E.
, and
Crandall
,
C. G.
,
2011
, “
Effect of Thermal Stress on Cardiac Function
,”
Exerc. Sport Sci. Rev.
,
39
(
1
), pp.
12
17
.
28.
Johnson
,
J. M.
, and
Proppe
,
D. W.
,
2011
,
Handbook of Physiology, Environmental Physiology
,
American Cancer Society
,
Atlanta, GA
, pp.
215
243
.
You do not currently have access to this content.