Abstract

A unique set of test protocols is developed to evaluate new materials for high-temperature and pressure applications (>700 °C and 310 bar) in next-generation thermal power plants. These protocols employ accelerated testing processes to provide a realistic estimate of a component’s life under actual field operating conditions. A state-of-the-art experimental facility to characterize turbine rotors for advanced ultra-supercritical conditions was commissioned at Bharat Heavy Electricals Limited, India. An alloy rotor mounted inside the test chamber is subjected to cyclic thermal and mechanical stresses at elevated temperatures for a predetermined number of thermal cycles to estimate its creep and fatigue life. Cyclic thermal and mechanical loads are applied by sequentially exposing rotors rotating at high speed to transient heating, steady-state soaking, and transient cooling. These transient heating and cooling processes are carefully designed to achieve specific temperature gradients inside the rotor bulk. The rotor is heated in a vacuum by thermal radiation from heater coils. In contrast, rotor cooling is accomplished by circulating relatively cold nitrogen gas through the chamber. Preliminary findings from accelerated tests are reported here. Two computational fluid dynamics (CFD) models were developed to support the transient heating and cooling experiments. Good agreement is observed between CFD simulations and measurements, validating the approach presented. This facility, established under a clean energy research initiative, plays a vital role in reducing the time and cost involved in finding suitable alloy materials, thus advancing the development of ultra-efficient thermal power plants.

References

1.
Starr
,
F.
,
2014
,
Structural Alloys for Power Plants
,
Woodhead Publishing, Elsevier
,
UK
, pp.
36
68
.
2.
Ohji
,
A.
, and
Haraguchi
,
M.
,
2017
,
Advances in Steam Turbines for Modern Power Plants
,
Woodhead Publishing, Elsevier
,
UK
, pp.
11
40
.
3.
Haan
,
J. M.
,
Torsten-Ulf
,
K.
,
Yang
,
W.
,
Christian
,
K.
,
Florian
,
K.
, and
Sabine
,
P.
,
2021
, “
Characterization of the Long-Term Behavior of 600/620 °C Turbine Materials
,”
VGB PowerTech
,
1
(
2
), pp.
55
60
. https://www.vgb.org/vgbmultimedia/PT202102HAAN-p-16600.pdf
4.
Tanaka
,
Y.
,
2008
,
Creep-Resistant Steels
,
Woodhead Publishing Series in Metals and Surface Engineering, Elsevier
,
UK
, pp.
174
214
.
5.
Ennis
,
P. J.
,
2014
,
Coal Power Plant Materials and Life Assessment
,
Woodhead Publishing, Elsevier
,
UK
, pp.
147
167
.
6.
Purgert
,
R.
,
Phillips
,
J.
,
Hendrix
,
H.
,
Shingledecker
,
J.
, and
Tanzosh
,
J.
,
2016
,
Materials for Advanced Ultra-Supercritical (A-USC) Steam Turbines—A-USC Component Demonstration
,
Energy Industries of Ohio Inc.
,
Independence, OH
.
7.
Shingledecker
,
J.
,
Purgert
,
R.
, and
Rawls
,
P.
,
2014
, “
Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
,”
7th International Conference on Advances in Materials Technology for Fossil Power Plants
,
Waikoloa, HI
,
Oct. 22–2
, pp.
41
52
, EPRI Report Number 3002002375.
8.
Liu
,
Z.
, and
Xie
,
X.
,
2017
,
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
Woodhead Publishing, Elsevier
,
UK
, pp.
715
731
.
9.
Di
,
G.
, and
Blum
,
R.
,
2017
,
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
Woodhead Publishing, Elsevier
,
UK
, pp.
773
846
.
10.
Government of India
,
2020
, “
BHEL to Establish High Temperature Rotor Test Rig for Coal Based Thermal Power Plants
,”
Department of Science and Technology, Ministry of Science and Technology, Government of India
, https://dst.gov.in/bhel-establish-high-temperature-rotor-test-rig-coal-based-thermal-power-plants, Accessed July 7, 2022.
11.
Pal
,
B. P.
,
Suresh
,
N.
,
Ramakrishna
,
M.
,
Narayana Teja
,
K.
,
Supak Pore
,
A.
,
Hensh
,
P. K.
,
Nandi
,
S.
, and
Batrani
,
M.
,
2020
, “
Development of Test Protocol for Accelerated Creep and Transient Thermo-Mechanical Testing of AUSC Steam Turbine Rotor in High-Temperature Spin Test Rig
,”
Trans. Indian Natl. Acad. Eng.
,
5
(
1
), pp.
83
88
.
12.
ASME BPVC
,
2015
, “
Experimental Stress and Fatigue Analysis
,” Section VIII, Annex 5F, Division 2-Alternative Rules,
ASME
,
New York
.
13.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
(
1
), pp.
765
775
.
14.
Ito
,
K.
,
Yajima
,
H.
, and
Arai
,
M.
,
2018
, “
Creep Life Prediction Method by Using High-Temperature Indentation Creep Test
,”
Multidiscipl. Digital Publ. Inst. Proc.
,
2
(
8
), p.
450
.
15.
Mathur
,
A.
,
Bhutani
,
O. P.
,
Jayakumar
,
T.
,
Dubey
,
D. K.
, and
Chetal
,
S. C.
,
India's National A-USC Mission-Plan and Progress, Advances in Materials Technology for Fossil Power Plants
,
ASM International
,
Materials Park, OH
, pp.
53
59
.
16.
Indian Boiler Regulations
,
1950
,
Central Boilers Board, Government of India
, https://dpiit.gov.in/sites/default/files/boiler_rules_updated/chapter8.htm, Accessed June 16, 2022.
17.
Iyota
,
H.
,
Nishimura
,
N.
, and
Nomura
,
T.
,
2000
, “
Characteristics of Combined Heat Transfer of Superheated Steam Drying: Numerical Study on Coupled Convection and Gas Radiation Heat Transfer
,”
Heat Transfer
,
29
(
5
), pp.
385
399
.
18.
Inaba
,
Y.
,
Zhang
,
Y.
,
Takeda
,
T.
, and
Shiina
,
Y.
,
2005
, “
Natural Convection Heat Transfer of High-Temperature Gas in an Annulus Between two Vertical Concentric Cylinders
,”
Heat Transfer
,
34
(
5
), pp.
293
308
.
19.
Michiel M.
,
d. B.
,
Keurentjes
,
J. T. F.
,
Schouten
,
J. C.
, and
Van der Schaaf
,
J.
,
2015
, “
Intensification of Convective Heat Transfer in a Stator–Rotor–Stator Spinning Disc Reactor
,”
Trans. Phenom. Fluid Mech.
,
61
(
7
), pp.
2307
2318
.
20.
Limpert
,
R.
,
1975
, “
Cooling Analysis of Disc Brake Rotors
,”
Technical Report 751014
,
SAE International, USA
.
21.
Autodesk® CFD Software
,
2022
, “
Computational Fluid Dynamics Software
,” © 2022 Autodesk Inc., USA, https://www.autodesk.com/products/cfd/features
22.
Bergman
,
T. L.
,
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
23.
Wang
,
H.
,
Chen
,
D.
,
Wang
,
G.
,
Long
,
Y.
,
Luo
,
J.
,
Liu
,
L.
, and
Yang
,
Q.
,
2013
, “
Measurement Technology for Material Emissivity Under High Temperature Dynamic Heating Conditions
,”
Measurement
,
46
(
10
), pp.
4023
4031
.
24.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
25.
ASME SB-564
,
1982
, “
Nickel Alloy Forgings
,”
American Society of Mechanical Engineers
,
USA
, OSTI Technical Report No. NE-M-2-20T-Rev.-8-82.
26.
Terada
,
Y.
, and
Sato
,
T.
,
2010
, “
Assessment of Creep Rupture Life of Heat Resistant Mg-Al-Ca Alloys
,”
J. Alloys Compd.
,
504
(
1
), pp.
261
264
.
27.
Eshati
,
S.
,
Abu
,
A.
,
Laskaridis
,
P.
, and
Haslam
,
A.
,
2011
, “
Investigation Into the Effects of Operating Conditions and Design Parameters on the Creep Life of High-Pressure Turbine Blades in a Stationary gas Turbine Engine
,”
Mech. Mech. Eng.
,
15
(
3
), pp.
237
247
. http://dspace.lib.cranfield.ac.uk/handle/1826/12543
28.
Fukuda
,
M.
,
2017
,
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
Woodhead Publishing, Elsevier
,
UK
, pp.
733
754
.
You do not currently have access to this content.