Abstract

Actuators that convert external stimuli to mechanical energy have aroused strong attention for emerging applications in robotics, artificial muscles, and other fields. However, their limited performance under harsh operating conditions evidenced by the low cycle life and hysteresis has restricted their practical applications. Here, a thermal-driven actuator based on layered metallic molybdenum disulfide (1T MoS2) nanosheets is demonstrated. The active actuator film exhibits fully reversible and highly stable (>99.296% in 2700 cycles) thermal-mechanical conversion over a wide temperature window (from −60 °C to 80 °C). Importantly, 1T MoS2 film shows a fast response with the bending rate and the recovery rate of >1.090 rad s−1 and >0.978 rad s−1, respectively. The assembled actuator can lift 20 times its weight over several centimeters for more than 200 cycles. This work, for the first time, demonstrates the thermoresponsive characteristics of 1T MoS2 in developing the thermal actuator, which may open new opportunities for various applications, such as robotics, artificial muscles, and human assist devices.

References

1.
Miyakawa
,
K.
,
Takahama
,
Y.
,
Kida
,
K.
,
Sato
,
K.
, and
Kushida
,
M.
,
2020
, “
Fabrication and Evaluation of Stacked Polymer Actuator and Divided Polymer Actuator Using the Electrospinning Method
,”
Jpn. J. Appl. Phys.
,
59
(
SI
), p.
7
.
2.
Zhao
,
P. F.
,
Cai
,
Y.
,
Liu
,
C.
,
Ge
,
D. T.
,
Li
,
B.
, and
Chen
,
H. L.
,
2021
, “
Study on the Bio-Inspired Electrochromic Device Enabled Via Dielectric Elastomer Actuator
,”
Opt. Mater.
,
111
, p.
10
.
3.
Schlinquer
,
T.
,
Homayouni-Amlashi
,
A.
,
Rakotondrabe
,
M.
, and
Mohand-Ousaid
,
A.
,
2021
, “
Design of Piezoelectric Actuators by Optimizing the Electrodes Topology
,”
IEEE Robot. Autom. Lett.
,
6
(
1
), pp.
72
79
.
4.
Pouryoussefi
,
S. G.
,
Mirzaei
,
M.
,
Alinejad
,
F.
, and
Pouryoussefi
,
S. M.
,
2016
, “
Experimental Investigation of Separation Bubble Control on an Iced Airfoil Using Plasma Actuator
,”
Appl. Therm. Eng.
,
100
, pp.
1334
1341
.
5.
Aliev
,
A. E.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Kuznetsov
,
A. A.
,
Fang
,
S.
,
Fonseca
,
A. F.
,
Ovalle
,
R.
, et al
,
2009
, “
Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles
,”
Science
,
323
(
5921
), pp.
1575
1578
.
6.
Ma
,
M.
,
Guo
,
L.
,
Anderson
,
D. G.
, and
Langer
,
R.
,
2013
, “
Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients
,”
Science
,
339
(
6116
), pp.
186
189
.
7.
Haines
,
C. S.
,
Lima
,
M. D.
,
Li
,
N.
,
Spinks
,
G. M.
,
Foroughi
,
J.
,
Madden
,
J. D. W.
,
Kim
,
S. H.
, et al
,
2014
, “
Artificial Muscles From Fishing Line and Sewing Thread
,”
Science
,
343
(
6173
), pp.
868
872
.
8.
Anwar
,
M. A.
,
Packirisamy
,
M.
, and
Ahmed
,
A. K. W.
,
2013
, “
Disc Type Thermal Actuator With Straight Beams for Angular Motion
,”
Appl. Therm. Eng.
,
51
(
1
), pp.
988
999
.
9.
Rajan
,
A.
,
Abouseada
,
M.
,
Manghaipathy
,
P.
,
Ozalp
,
N.
,
Majid
,
F. A.
,
Salem
,
A.
, and
Srinivasa
,
A.
,
2016
, “
An Experimental and Analytical Study on the Feasibility of SMA Spring Driven Actuation of an Iris Mechanism
,”
Appl. Therm. Eng.
,
105
, pp.
849
861
.
10.
Wu
,
T.
,
Hu
,
Y.
,
Rong
,
H.
, and
Wang
,
C.
,
2021
, “
SEBS-Based Composite Phase Change Material With Thermal Shape Memory for Thermal Management Applications
,”
Energy
,
221
, p.
119900
.
11.
Zhang
,
X.
,
Pint
,
C. L.
,
Lee
,
M. H.
,
Schubert
,
B. E.
,
Jamshidi
,
A.
,
Takei
,
K.
,
Ko
,
H.
, et al
,
2011
, “
Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites
,”
Nano Lett.
,
11
(
8
), pp.
3239
3244
.
12.
Jiang
,
S.
,
Park
,
C.-S.
,
Lee
,
W.-B.
,
Zhou
,
C.
, and
Lee
,
S.-S.
,
2020
, “
Light-Driven Diffraction Grating Based on a Photothermal Actuator Incorporating Femtosecond Laser-Induced GO/rGO
,”
Opt. Express
,
28
(
26
), p.
39552
.
13.
Zhao
,
D.
, and
Liu
,
Y.
,
2020
, “
A Prototype for Light-Electric Harvester Based on Light Sensitive Liquid Crystal Elastomer Cantilever
,”
Energy
,
198
, p.
117351
.
14.
Tschiersky
,
M.
,
Hekman
,
E. E. G.
,
Brouwer
,
D. M.
,
Herder
,
J. L.
, and
Suzumori
,
K.
,
2020
, “
A Compact McKibben Muscle Based Bending Actuator for Close-to-Body Application in Assistive Wearable Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3042
3049
.
15.
McCracken
,
J. M.
,
Donovan
,
B. R.
, and
White
,
T. J.
,
2020
, “
Materials as Machines
,”
Adv. Mater.
,
32
(
20
), p.
48
.
16.
Brochu
,
P.
, and
Pei
,
Q. B.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
17.
Ohm
,
C.
,
Brehmer
,
M.
, and
Zentel
,
R.
,
2010
, “
Liquid Crystalline Elastomers as Actuators and Sensors
,”
Adv. Mater.
,
22
(
31
), pp.
3366
3387
.
18.
Chen
,
J.-L.
, and
Liao
,
Y.-H.
,
2021
, “
Effects of an Annular Plasma Actuator on a Co-Flow Jet Downstream of a Bluff-Body
,”
Appl. Therm. Eng.
,
192
, p.
116975
.
19.
Acerce
,
M.
,
Akdogan
,
E. K.
, and
Chhowalla
,
M.
,
2017
, “
Metallic Molybdenum Disulfide Nanosheet-Based Electrochemical Actuators
,”
Nature
,
549
(
7672
), pp.
370
373
.
20.
Detsi
,
E.
,
Selles
,
M. S.
,
Onck
,
P. R.
, and
De Hosson
,
J. T. M.
,
2013
, “
Nanoporous Silver as Electrochemical Actuator
,”
Scr. Mater.
,
69
(
2
), pp.
195
198
.
21.
Xie
,
X.
,
Qu
,
L.
,
Zhou
,
C.
,
Li
,
Y.
,
Zhu
,
J.
,
Bai
,
H.
,
Shi
,
G.
, and
Dai
,
L.
,
2010
, “
An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator
,”
ACS Nano
,
4
(
10
), pp.
6050
6054
.
22.
Bunch
,
J. S.
,
van der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2007
, “
Electromechanical Resonators From Graphene Sheets
,”
Science
,
315
(
5811
), pp.
490
493
.
23.
Carpi
,
F.
,
Bauer
,
S.
, and
De Rossi
,
D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
24.
Mohith
,
S.
,
Upadhya
,
A. R.
,
Navin
,
K. P.
,
Kulkarni
,
S. M.
, and
Rao
,
M.
,
2021
, “
Recent Trends in Piezoelectric Actuators for Precision Motion and Their Applications: A Review
,”
Smart Mater. Struct.
,
30
(
1
), p.
36
.
25.
Leng
,
J. S.
,
Lan
,
X.
,
Liu
,
Y. J.
, and
Du
,
S. Y.
,
2011
, “
Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications
,”
Prog. Mater. Sci.
,
56
(
7
), pp.
1077
1135
.
26.
Rohtlaid
,
K.
,
Nguyen
,
G. T. M.
,
Ebrahimi-Takalloo
,
S.
,
Nguyen
,
T. N.
,
Madden
,
J. D. W.
,
Vidal
,
F.
, and
Plesse
,
C.
,
2021
, “
Asymmetric PEDOT:PSS Trilayers as Actuating and Sensing Linear Artificial Muscles
,”
Adv. Mater. Technol.
,
6
(
3
), p.
2001063
.
27.
Li
,
M.
,
Luo
,
C.
,
Zhang
,
J.
,
Yang
,
J. J.
,
Xu
,
J. K.
,
Yao
,
W. Q.
,
Tan
,
R. R.
,
Duan
,
X. M.
, and
Jiang
,
F. X.
,
2020
, “
Electrochemical Doping Tuning of Flexible Polypyrrole Film With Enhanced Thermoelectric Performance
,”
Surf. Interfaces
,
21
, p.
7
.
28.
Yim
,
J. E.
,
Lee
,
S. H.
,
Jeong
,
S.
,
Zhang
,
K. A. I.
, and
Byun
,
J.
,
2021
, “
Controllable Porous Membrane Actuator by Gradient Infiltration of Conducting Polymers
,”
J. Mater. Chem. A
,
9
(
8
), pp.
5007
5015
.
29.
Leronni
,
A.
, and
Bardella
,
L.
,
2021
, “
Modeling Actuation and Sensing in Ionic Polymer Metal Composites by Electrochemo-Poromechanics
,”
J. Mech. Phys. Solids
,
148
, p.
22
.
30.
Wang
,
H. S.
,
Cho
,
J.
,
Park
,
H. W.
,
Jho
,
J. Y.
, and
Park
,
J. H.
,
2021
, “
Ionic Polymer-Metal Composite Actuators Driven by Methylammonium Formate for High-Voltage and Long-Term Operation
,”
J. Ind. Eng. Chem.
,
96
, pp.
194
201
.
31.
Zhao
,
Q.
,
Liu
,
S.
,
Chen
,
J.
,
He
,
G.
,
Di
,
J.
,
Zhao
,
L.
,
Su
,
T.
,
Zhang
,
M.
, and
Hou
,
Z.
,
2021
, “
Fast-Moving Piezoelectric Micro-Robotic Fish With Double Caudal Fins
,”
Rob. Auton. Syst.
,
140
, p.
103733
.
32.
Yu
,
X. W.
,
Cheng
,
H. H.
,
Zhang
,
M.
,
Zhao
,
Y.
,
Qu
,
L. T.
, and
Shi
,
G. Q.
,
2017
, “
Graphene-Based Smart Materials
,”
Nat. Rev. Mater.
,
2
(
9
), p.
13
.
33.
Li
,
Z. H.
,
Wang
,
L.
,
Li
,
Y.
,
Feng
,
Y. Y.
, and
Feng
,
W.
,
2019
, “
Carbon-Based Functional Nanomaterials: Preparation, Properties and Applications
,”
Compos. Sci. Technol.
,
179
, pp.
10
40
.
34.
Su
,
Y.
,
Wei
,
H.
,
Gao
,
R.
,
Yang
,
Z.
,
Zhang
,
J.
,
Zhong
,
Z.
, and
Zhang
,
Y.
,
2012
, “
Exceptional Negative Thermal Expansion and Viscoelastic Properties of Graphene Oxide Paper
,”
Carbon
,
50
(
8
), pp.
2804
2809
.
35.
Eschen
,
K.
,
Granberry
,
R.
, and
Abel
,
J.
,
2020
, “
Guidelines on the Design, Characterization, and Operation of Shape Memory Alloy Knitted Actuators
,”
Smart Mater. Struct.
,
29
(
3
), p.
17
.
36.
Baik
,
S.
,
Hwang
,
G. W.
,
Jang
,
S.
,
Jeong
,
S.
,
Kim
,
K. H.
,
Yang
,
T. H.
, and
Pang
,
C.
,
2021
, “
Bioinspired Microsphere-Embedded Adhesive Architectures for an Electrothermally Actuating Transport Device of Dry/Wet Pliable Surfaces
,”
ACS Appl. Mater. Interfaces
,
13
(
5
), pp.
6930
6940
.
37.
Xu
,
Y.
, and
Li
,
G.
,
2012
, “
Thermal Actuation Using Nanocomposites: A Computational Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
11
), p.
112401
.
38.
Li
,
Y. H.
,
Chang
,
K.
,
Sun
,
Z. T.
,
Shangguan
,
E.
,
Tang
,
H. W.
,
Li
,
B.
,
Sun
,
J. Y.
, and
Chang
,
Z. R.
,
2020
, “
Selective Preparation of 1T-and 2H-Phase MoS2 Nanosheets With Abundant Monolayer Structure and Their Applications in Energy Storage Devices
,”
ACS Appl. Energy Mater.
,
3
(
1
), pp.
998
1009
.
39.
Eda
,
G.
,
Yamaguchi
,
H.
,
Voiry
,
D.
,
Fujita
,
T.
,
Chen
,
M. W.
, and
Chhowalla
,
M.
,
2011
, “
Photoluminescence From Chemically Exfoliated MoS2
,”
Nano Lett.
,
11
(
12
), pp.
5111
5116
.
40.
Jiang
,
Z.
,
Zhai
,
S.
,
Huang
,
M.
,
Songsiriritthigul
,
P.
,
Aung
,
S. H.
,
Oo
,
T. Z.
,
Luo
,
M.
, and
Chen
,
F.
,
2021
, “
3D Carbon Nanocones/Metallic MoS2 Nanosheet Electrodes Towards Flexible Supercapacitors for Wearable Electronics
,”
Energy
,
227
, p.
120419
.
41.
Lei
,
Z.
, and
Wu
,
P.
,
2019
, “
A Highly Transparent and Ultra-Stretchable Conductor With Stable Conductivity During Large Deformation
,”
Nat. Commun.
,
10
(
1
), p.
3429
.
42.
Guan
,
Q.
,
Lin
,
G.
,
Gong
,
Y.
,
Wang
,
J.
,
Tan
,
W.
,
Bao
,
D.
,
Liu
,
Y.
, et al
,
2019
, “
Highly Efficient Self-Healable and Dual Responsive Hydrogel-Based Deformable Triboelectric Nanogenerators for Wearable Electronics
,”
J. Mater. Chem. A
,
7
(
23
), pp.
13948
13955
.
You do not currently have access to this content.