Abstract

Krylov-based methods are an attractive alternative to traditional fixed-point iterative schemes, being much more robust and accurate when solving elliptic equations (e.g., the energy equation in the solid domain). This study assesses the performance of a Krylov-based accelerator, when used for conjugate heat transfer (CHT) simulations of an electrical battery pack. The nonlinear nature of CHT simulations (due to spatial and temporal changes in boundary conditions) necessitates the use of the non-inear form of the Krylov-based accelerator (termed NKA), which utilizes the generalized minimized residual (GMRES) method, and works by accelerating an existing fixed-point iteration scheme. NKA is used while performing steady-state CHT simulations of an air-cooled lithium-ion battery pack, specifically to help accelerate the solution of the solid domain energy equation. The effect of using either isotropic or anisotropic thermal conductivity within the cylindrical lithium-ion battery cells is also evaluated. Results obtained using the NKA accelerator are compared, in terms of accuracy and speed, with those obtained from a traditional nonlinear fixed-point iterative scheme based on successive over-relaxation (SOR). The NKA accelerator is found to perform quite well for the problem at hand, providing results with the specified accuracy, while also being between 5 and 20 times faster than SOR (while solving the solid energy equation). The robust nature of NKA also leads to better global heat balance within the battery pack at all times during the simulation. These observations hold for both the isotropic and anisotropic thermal conductivity conditions. Overall, computational cost reductions of 30–40% are observed when using NKA for the battery pack simulations. Although the performance of NKA is demonstrated for a battery cooling application, NKA performs quite well in other applications also.

References

1.
Dorfman
,
A. S.
,
2009
,
Conjugate Problems in Convective Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
2.
Richards
,
K.
,
Senecal
,
P.
, and
Pomnaring
,
E.
,
2021
, “
CONVERGE (v3.0)
,” Convergent Science, Inc., Madison, WI.
3.
Kumar
,
G.
, and
Drennan
,
S.
,
2015
, “
Simulations of the Effect of Velocity Ratios on an Effusion Cooled Combustor Wall With Adaptive Mesh Refinement CFD and
Conjugate Heat Transfer
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
, pp.
1
11
.
4.
Broatch
,
A.
,
Margot
,
X.
,
Garcia-Tiscar
,
J.
, and
Escalona
,
J.
,
2019
, “
Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine
”, No. 2019-24-0091, SAE Technical Paper.
5.
Maciejewski
,
D.
,
Sukheswalla
,
P.
,
Wang
,
C.
, and
Drennan
,
S.
,
2019
, “
Accelerating Accurate Urea/SCR Film Temperature Simulations to Time-Scales Needed for Urea Deposit Predictions
”, No. 2019-01-0982, SAE Technical Paper.
6.
Young
,
D.
, Jr.
,
1971
,
Iterative Solution of Large Linear Systems
,
Academic Press
,
Orlando, FL
.
7.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
SIAM
,
Philadelphia
.
8.
Graves-Morris
,
P. R.
,
2007
, “
BiCGStab, VPAStab and an Adaptation to Mildly Nonlinear Systems
,”
J. Comput. Appl. Math.
,
201
(
1
), pp.
284
299
.
9.
Washio
,
T.
, and
Oosterlee
,
C. W.
,
1997
, “
Krylov Subspace Acceleration for Nonlinear Multigrid Schemes
,”
Electron. Trans. Numer. Anal.
,
6
, pp.
271
290
. ISSN 1068-9613
10.
Anderson
,
D. G.
,
1965
, “
Iterative Procedures for Nonlinear Integral Equations
,”
J. Assoc. Comput. Mach.
,
12
(
4
), pp.
547
560
.
11.
Walker
,
H. F.
, and
Ni
,
P.
,
2011
, “
Anderson Acceleration for Fixed-Point Iterations
,”
SIAM J. Numer. Anal.
,
49
(
4
), pp.
1715
1735
.
12.
Calef
,
M. T.
,
Fichtl
,
E.
,
Warsa
,
J.
,
Brendt
,
M.
, and
Carlson
,
N.
,
2013
, “
Nonlinear Krylov Acceleration Applied to a Discrete Ordinates Formulation of the k-Eigenvalue Problem
,”
J. Comput. Phys.
,
238
, pp.
188
209
.
13.
Hestenes
,
M. R.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Natl. Bur. Stand.
,
49
(
6
), pp.
409
436
.
14.
Fletcher
,
R.
, and
Reeves
,
C. M.
,
1964
, “
Function Minimization by Conjugate Gradients
,”
Comput. J.
,
7
(
2
), pp.
149
154
.
15.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
16.
Warner
,
J. T.
,
2019
,
Lithium-Ion Battery Chemistries: A Primer
,
Elsevier Science
,
Cambridge, MA
.
17.
Abraham
,
D. P.
,
Roth
,
E.
,
Kostecki
,
R.
,
McCarthy
,
K.
,
MacLaren
,
S.
, and
Doughty
,
D.
,
2006
, “
Diagnostic Examination of Thermally Abused High-Power Lithium-Ion Cells
,”
J. Power Sources
,
161
(
1
), pp.
648
657
.
18.
Jiaqiang
,
E.
,
Yue
,
M.
,
Chen
,
J.
,
Zhu
,
H.
,
Deng
,
Y.
,
Zhu
,
Y.
,
Zhang
,
F.
,
Wen
,
M.
,
Zhang
,
B.
, and
Kang
,
S.
,
2018
, “
Effects of the Different Air Cooling Strategies on Cooling Performance of a Lithium-Ion Battery Module With Baffle
,”
Appl. Therm. Eng.
,
144
(
5
), pp.
231
241
.
19.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), pp.
1
17
.
20.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Ghanbarpour
,
M.
,
Jaguemont
,
J.
,
Sokkeh
,
M.
,
Gandoman
,
F.
,
Berecibar
,
M.
, and
Mierlo
,
J.
,
2020
, “
A New Concept of Thermal Management System in Li-Ion Battery Using Air Cooling and Heat Pipe for Electric Vehicles
,”
Appl. Therm. Eng.
,
174
, pp.
1
14
.
21.
Jilte
,
R. D.
, and
Kumar
,
R.
,
2018
, “
Numerical Investigation on Cooling Performance of Li-Ion Battery Thermal Management System at High Galvanostatic Discharge
,”
Int. J. Eng. Sci. Technol.
,
21
(
5
), pp.
957
967
.
22.
Cicconi
,
P.
,
Germani
,
M.
, and
Landi
,
D.
,
2013
, “
Modeling and Thermal Simulation of a PHEV Battery Module With Cylindrical LFP Cells
,”
World Electr. Veh. J.
,
6
, pp.
175
185
.
23.
Maleki
,
H.
,
Hallaj
,
S.
,
Selman
,
J.
,
Dinwiddie
,
R.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium-Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.
24.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
25.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
26.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries, Inc.
,
La Canada, CA
.
27.
Luo
,
Z.
,
Sukheswalla
,
P.
,
Drennan
,
S.
,
Wang
,
M.
, and
Senecal
,
P.
,
2017
, “
3D Numerical Simulations of Selective Catalytic Reduction of NOx With Detailed Surface Chemistry
,”
Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference
,
Seattle, WA
,
Oct. 15–18
, Vol.
2
, pp.
1
9
.
28.
Le Moine
,
J.
,
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2017
, “
Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine
”, SAE Technical Paper, 2017-01-0669.
29.
Liu
,
G.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
Han
,
X.
,
2014
, “
Analysis of the Heat Generation of Lithium-Ion Battery During Charging and Discharging Considering Different Influencing Factors
,”
J. Therm. Anal. Calorim.
,
116
(
2
), pp.
1001
1010
.
30.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory Technical Report LA-13313-MS.
31.
Spinner
,
N. S.
,
Hinnant
,
K.
,
Mazurick
,
R.
,
Brandon
,
A.
,
Rose-Pehrsson
,
S.
, and
Tuttle
,
S.
,
2016
, “
Novel 18650 Lithium-ion Battery Surrogate Cell Design with Anisotropic Thermophysical Properties for Studying Failure Events
,”
J. Power Sources
,
312
, pp.
1
11
.
You do not currently have access to this content.