Abstract

As stringent emissions controls are being placed on gas turbines, modern combustor design optimization is contingent on the accurate characterization of the combustor flame side heat loads. Power generation turbines are increasingly moving toward natural gas, biogas, and syngas, whose composition is highly dependent on the sourcing location. With fuel flexible nozzles, it is important to understand the heat load from various gas mixtures to optimize the cooling design to make sure the liner is not under/over cooled for some mixtures as this has a larger effect on NOx/CO emissions. In addition to knowing the heat load distribution, it is important to understand the peak heat load under start/stop transient conditions which tend to be much higher than steady-state/cruise altitude heat loads. The present work focuses on the experimental measurement of the transient heat load along a can combustor under reacting conditions for a swirl-stabilized premixed methane–air flame. Tests were carried out under various equivalence ratios, Reynolds numbers, and pilot fuel flowrate. An infrared camera was used to measure the inner and outer wall temperatures of the liner to calculate the liner heat load. Particle image velocimetry (PIV) was employed to visualize the flowfield for various reacting conditions studied in this work. Based on the heat transfer study, a detailed report of transient heat load along the length of the liner wall has been presented here. Initial start transient heat load on the liner wall is ∼10–40% more than the steady-state heat load.

References

1.
Lefebvre
,
A. H.
, and
Herbert
,
M. V.
,
1960
, “
Heat-Transfer Processes in Gas-Turbine Combustion Chambers
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
463
478
.
2.
Gomez-Ramirez
,
D.
,
Ekkad
,
S. V.
,
Lattimer
,
B. Y.
,
Moon
,
H. K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2015
, “
Separation of Radiative and Convective Wall Heat Fluxes Using Thermal Infrared Measurements Applied to Flame Impingement
,”
Proceedings of International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
, ASME Paper No. IMECE2015-52322.
3.
Baukal
,
C. E.
, and
Gebhart
,
B.
,
1997
, “
Surface Condition Effects on Flame Impingement Heat Transfer
,”
Exp. Therm. Fluid. Sci.
,
15
(
4
), pp.
323
335
.
4.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid. Sci.
,
6
(
2
), pp.
111
134
.
5.
Hou
,
S. S.
, and
Ko
,
Y. C.
,
2005
, “
Influence of Oblique Angle and Heating Height on Flame Structure, Temperature Field and Efficiency of an Impinging Laminar Jet Flame
,”
Energy Convers. Manage.
,
46
(
6
), pp.
941
958
.
6.
Dong
,
L. L.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2003
, “
Heat Transfer Characteristics of a Pair of Impinging Rectangular Flame Jets
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1140
1146
.
7.
Chander
,
S.
, and
Ray
,
A.
,
2007
, “
Heat Transfer Characteristics of Three Interacting Methane/Air Flame Jets Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
640
653
.
8.
Baukal
,
C. E.
, and
Gebhart
,
B.
,
1998
, “
Heat Transfer From Oxygen-Enhanced/Natural Gas Flames Impinging Normal to a Plane Surface
,”
Exp. Therm. Fluid. Sci.
,
16
(
3
), pp.
247
259
.
9.
Chander
,
S.
, and
Ray
,
A.
,
2006
, “
Influence of Burner Geometry on Heat Transfer Characteristics of Methane/air Flame Impinging on Flat Surface
,”
Exp. Heat Transfer
,
19
(
1
), pp.
15
38
.
10.
Dong
,
L. L.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2002
, “
Heat Transfer Characteristics of Premixed Butane/Air Flame Jet Impinging on an Inclined Flat Surface
,”
Heat Mass Transfer
,
39
(
1
), pp.
19
26
.
11.
Hindasageri
,
V.
,
Vedula
,
R. P.
, and
Prabhu
,
S. V.
,
2014
, “
Heat Transfer Distribution for Impinging Methane–Air Premixed Flame Jets
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
461
473
.
12.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
135
146
.
13.
Behrendt
,
T.
,
Lengyel
,
T.
, and
Hassa
,
C.
,
2008
, “
Characterization of Advanced Combustor Cooling Concepts Under Realistic Operating Conditions
,”
Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, ASME Paper No. GT2008-51191, pp.
1801
1814
.
14.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
15.
Mazzei
,
L.
,
Puggelli
,
S.
,
Bertini
,
D.
,
Andreini
,
A.
,
Facchini
,
B.
,
Vitale
,
I.
, and
Santoriello
,
A.
,
2019
, “
Numerical and Experimental Investigation on an Effusion-Cooled Lean Burn Aeronautical Combustor: Aerothermal Field and Emissions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041006
.
16.
Ji
,
Y.
,
Ge
,
B.
,
Zang
,
S.
,
Xin
,
J.
,
Ye
,
C.
, and
Song
,
H.
,
2017
, “
Effect of Holes Array on Effusion Cooling Characteristics of a Three-Nozzle Model Combustor Liner
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-64247.
17.
Ji
,
Y.
,
Ge
,
B.
,
Chi
,
Z.
, and
Zang
,
S.
,
2018
, “
Overall Cooling Effectiveness of Effusion Cooled Annular Combustor Liner at Reacting Flow Conditions
,”
Appl. Therm. Eng.
,
130
, pp.
877
888
.
18.
Gomez-Ramirez
,
D.
,
Kedukodi
,
S.
,
Ekkad
,
S. V.
,
Moon
,
H. K. X.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2017
, “
Investigation of Isothermal Convective Heat Transfer in an Optical Combustor With a Low-Emissions Swirl Fuel Nozzle
,”
Appl. Therm. Eng.
,
114
, pp.
65
76
.
19.
Gomez-Ramirez
,
D.
,
Ekkad
,
S. V.
,
Moon
,
H. K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2017
, “
Isothermal Coherent Structures and Turbulent Flow Produced by a Gas Turbine Combustor Lean Pre-mixed Swirl Fuel Nozzle
,”
Exp. Therm. Fluid. Sci.
,
81
, pp.
187
201
.
20.
Mazzei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Turrini
,
F.
,
2016
, “
Impact of Swirl Flow on Combustor Liner Heat Transfer and Cooling: A Numerical Investigation With Hybrid Reynolds-Averaged Navier–Stokes Large Eddy Simulation Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051504
.
21.
Patil
,
S.
,
Sedalor
,
T.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H. K.
, and
Srinivasan
,
R.
,
2011
, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031010
.
22.
Gomez Ramirez
,
D.
,
2016
, “
Heat Transfer and Flow Measurements in an Atmospheric Lean Pre-Mixed Combustor
,”
Ph.D. dissertation
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
23.
Park
,
S.
,
Gomez-Ramirez
,
D.
,
Gadiraju
,
S.
,
Kedukodi
,
S.
,
Ekkad
,
S. V.
,
Moon
,
H. K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2018
, “
Flow Field and Wall Temperature Measurements for Reacting Flow in a Lean Premixed Swirl Stabilized Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091503
.
24.
Park
,
S.
,
2018
, “
Experimental Investigation of Flow and Wall Heat Transfer in an Optical Combustor for Reacting Swirl Flows
,”
Ph.D. dissertation
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
25.
Gadiraju
,
S.
,
Park
,
S.
,
Singh
,
P.
,
Pandit
,
J.
,
Ekkad
,
S. V.
,
Liberatore
,
F.
,
Srinivasan
,
R.
, and
Ho
,
Y. H.
,
2018
, “
Fuel Interchangeability Effects on the Lean Blowout for a Lean Premixed Swirl Stabilized Fuel Nozzle
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-76249.
26.
Gadiraju
,
S.
,
2018
, “
Study of Lean Blowout Limits and Effects of Near Blowout Oscillations on Flow Field and Heat Transfer on Gas Turbine Combustor
,”
Ph.D. dissertation
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
27.
Tinga
,
T.
,
Van Kampen
,
J. F.
,
De Jager
,
B.
, and
Kok
,
J. B.
,
2007
, “
Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
69
79
.
28.
Ramakrishnan
,
K. R.
,
Ahmed
,
S.
,
Wahls
,
B.
,
Singh
,
P.
,
Aleman
,
M. A.
,
Granlund
,
K.
,
Ekkad
,
S.
,
Liberatore
,
F.
, and
Ho
,
Y. H.
,
2019
, “
Gas Turbine Combustor Liner Wall Heat Load Characterization for Different Gaseous Fuels
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
, ASME Paper No. IMECE2019-11283.
29.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
(
1
), e30, pp.
1
10
.
30.
Westerweel
,
J.
,
1995
, “
Digital Particle Image Velocimetry: Theory and Application
,”
Ph.D. dissertation
,
Technische Universiteit Delft
,
Delft, Netherlands
.
31.
O’Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer–Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
.
32.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.
33.
Ramakrishnan
,
K. R.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2018, November
, “
Three-Tier Impingement Cooling Design for Gas Turbine Blade Trailing Edge
,”
Proceedings of ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburg, PA
,
Nov. 9–15
, ASME Paper No. IMECE2018-86430.
34.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.
You do not currently have access to this content.