Abstract
In this paper, a thin film evaporation model that includes expressions for energy, mass, and momentum conservation was established through the augmented Young–Laplace model. Based on this model, the effects of pore size and superheating on heat transfer during thin film evaporation were analyzed. The influence of the wick diameter of the loop heat pipe (LHP) on the critical heat flux of the evaporator is analyzed theoretically. The results show that pore size and superheating mainly influence evaporation through changes in the length of the transition film and intrinsic meniscus. The contribution of the transition film area is mainly reflected in the heat transfer coefficient, and the contribution of the intrinsic meniscus area is mainly apparent in the quantity of heat that is transferred. When an LHP evaporator is operating in a state of surface evaporation, a higher heat transfer coefficient can be achieved using a smaller pore size.