Abstract

In this paper, a thin film evaporation model that includes expressions for energy, mass, and momentum conservation was established through the augmented Young–Laplace model. Based on this model, the effects of pore size and superheating on heat transfer during thin film evaporation were analyzed. The influence of the wick diameter of the loop heat pipe (LHP) on the critical heat flux of the evaporator is analyzed theoretically. The results show that pore size and superheating mainly influence evaporation through changes in the length of the transition film and intrinsic meniscus. The contribution of the transition film area is mainly reflected in the heat transfer coefficient, and the contribution of the intrinsic meniscus area is mainly apparent in the quantity of heat that is transferred. When an LHP evaporator is operating in a state of surface evaporation, a higher heat transfer coefficient can be achieved using a smaller pore size.

References

1.
Zhang
,
H.
,
Jiang
,
C.
,
Zhang
,
Z.
,
Liu
,
Z.
,
Luo
,
X.
, and
Liu
,
W.
,
2020
, “
A Study on Thermal Performance of a Pump-Assisted Loop Heat Pipe With Ammonia as Working Fluid
,”
Appl. Therm. Eng.
,
175
, p.
115342
.
2.
Chen
,
B. B.
,
Liu
,
W.
,
Liu
,
Z. C.
,
Li
,
H.
, and
Yang
,
J. G.
,
2012
, “
Experimental Investigation of Loop Heat Pipe With Flat Evaporator Using Biporous Wick
,”
Appl. Therm. Eng.
,
42
, pp.
34
40
.
3.
Kou
,
Z.-H.
,
Lv
,
H.-T.
,
Zeng
,
W.
,
Bai
,
M.-L.
, and
Lv
,
J.-Z.
,
2015
, “
Comparison of Different Analytical Models for Heat and Mass Transfer Characteristics of an Evaporating Meniscus in a Micro-Channel
,”
Int. Commun. Heat Mass Transfer
,
63
, pp.
49
53
.
4.
Derjaguin
,
B. V.
,
1955
, “
The Definition and Magnitude of Disjoining Pressure and Its Role in the Statics and Dynamics of Thin Fluid Films
,”
Kolloidn. Zh.
,
17
, pp.
205
214
.
5.
Akkuş
,
Y.
,
Tarman
,
H. I.
,
Çetin
,
B.
, and
Dursunkaya
,
Z.
,
2017
, “
Two-Dimensional Computational Modeling of Thin Film Evaporation
,”
Int. J. Therm. Sci.
,
121
, pp.
237
248
.
6.
Zheng
,
Z.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer of Evaporating Thin Film in a Sessile Droplet
,”
Int. J. Heat Mass Transfer
,
101
, pp.
10
19
.
7.
Pratt
,
D. M.
,
Brown
,
J. R.
, and
Hallinan
,
K. P.
,
1998
, “
Thermocapillary Effects on the Stability of a Heated, Curved Meniscus
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
220
226
.
8.
Park
,
K.
, and
Lee
,
K.-S.
,
2003
, “
Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4587
4594
.
9.
Wang
,
Y.
,
Zhou
,
F.
, and
Honda
,
H.
,
2003
, “
Theoretical Model of Thin Film Evaporation Heat Transfer Based on Grooved Surface of Micro-Fin Tubes
,”
J. Eng. Thermophy.
,
3
(
3
), pp.
445
447
. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GCRB200403024&DbName=CJFQ2004
10.
Habibi Matin
,
M.
, and
Moghaddam
,
S.
,
2020
, “
Thin Liquid Films Formation and Evaporation Mechanisms Around Elongated Bubbles in Rectangular Cross-Section Microchannels
,”
Int. J. Heat Mass Transfer
,
163
, p.
120474
.
11.
Siedel
,
B.
,
Sartre
,
V.
, and
Lefèvre
,
F.
,
2015
, “
Complete Analytical Model of a Loop Heat Pipe With a Flat Evaporator
,”
Int. J. Therm. Sci.
,
89
, pp.
372
386
.
12.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Dau
,
M. J.
, and
Wongwises
,
S.
,
2017
, “
Entropy Generation Analysis of a Miniature Loop Heat Pipe With Graphene–Water Nanofluid: Thermodynamics Model and Experimental Study
,”
Int. J. Heat Mass Transfer
,
106
, pp.
407
421
.
13.
Lin
,
F.-C.
,
Liu
,
B.-H.
,
Huang
,
C.-T.
, and
Chen
,
Y.-M.
,
2011
, “
Evaporative Heat Transfer Model of a Loop Heat Pipe With Bidisperse Wick Structure
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4621
4629
.
14.
Du
,
S.
,
Zhang
,
Q.
,
Hou
,
P.
,
Yue
,
C.
, and
Zou
,
S.
,
2020
, “
Experimental Study and Steady-State Model of a Novel Plate Loop Heat Pipe Without Compensation Chamber for CPU Cooling
,”
Sustain. Cities Soc.
,
53
, p.
101894
.
15.
Vlassov
,
V. V.
, and
Riehl
,
R. R.
,
2008
, “
Mathematical Model of a Loop Heat Pipe With Cylindrical Evaporator and Integrated Reservoir
,”
Appl. Therm. Eng.
,
28
(
8
), pp.
942
954
.
16.
Ramasamy
,
N. S.
,
Kumar
,
P.
,
Wangaskar
,
B.
,
Khandekar
,
S.
, and
Maydanik
,
Y. F.
,
2018
, “
Miniature Ammonia Loop Heat Pipe for Terrestrial Applications: Experiments and Modeling
,”
Int. J. Therm. Sci.
,
124
, pp.
263
278
.
17.
Schonberg
,
J. A.
,
DasGupta
,
S.
, and
Wayner
,
P. C.
,
1995
, “
An Augmented Young–Laplace Model of an Evaporating Meniscus in a Microchannel With High Heat Flux
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
163
170
.
18.
Ha
,
J.
, and
Peterson
,
G.
,
1996
, “
The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
747
755
.
19.
Jinliang
,
W.
,
1999
, “
Analysis of Evaporation Heat Transfer in Capillary Tubes
,”
J. Chem. Ind. Eng. China
,
50
(
4
), pp.
435
442
.
20.
Putnam
,
S. A.
,
Briones
,
A. M.
,
Byrd
,
L. W.
,
Ervin
,
J. S.
,
Hanchak
,
M. S.
,
White
,
A.
, and
Jones
,
J. G.
,
2012
, “
Microdroplet Evaporation on Superheated Surfaces
,”
Int. J. Heat Mass Transfer
,
55
(
21
), pp.
5793
5807
.
21.
Grigoriev
,
R. O.
, and
Tongran
,
Q.
,
2018
, “
The Effect of Phase Change on Stability of Convective Flow in a Layer of Volatile Liquid Driven by a Horizontal Temperature Gradient
,”
J. Fluid Mech.
,
838
, pp.
248
283
.
22.
Xu
,
Q.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2019
, “
Thin Film Profile and Interfacial Temperature Distribution of Binary Fluid Sessile Droplet Evaporating on Heated Substrate
,”
Int. J. Heat Mass Transfer
,
135
, pp.
274
283
.
23.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19
), pp.
3933
3942
.
24.
Jianying
,
M.
,
Jinliang
,
W.
, and
Tongze
,
M.
,
1999
, “
Effects of Separation Pressure and Capillary Force on Evaporation Heat Transfer in Capillary Tubes
,”
Chinese Society of Engineering Thermophysics Conference on Heat Mass Transfer
,
Suzhou, China
,
March
, pp.
1
6
.
25.
Xie
,
Y.
,
Zhou
,
Y.
,
Wen
,
D.
,
Wu
,
H.
,
Haritos
,
G.
, and
Zhang
,
H.
,
2018
, “
Experimental Investigation on Transient Characteristics of a Dual Compensation Chamber Loop Heat Pipe Subjected to Acceleration Forces
,”
Appl. Therm. Eng.
,
130
, pp.
169
184
.
26.
Wu
,
S.-C.
,
2015
, “
Study of Self-Rewetting Fluid Applied to Loop Heat Pipe
,”
Int. J. Therm. Sci.
,
98
, pp.
374
380
.
27.
Choi
,
J.
,
Sung
,
B.
,
Kim
,
C.
, and
Borca-Tasciuc
,
D.-A.
,
2013
, “
Interface Engineering to Enhance Thermal Contact Conductance of Evaporators in Miniature Loop Heat Pipe Systems
,”
Appl. Therm. Eng.
,
60
(
1
), pp.
371
378
.
28.
Lu
,
X.-Y.
,
Hua
,
T.-C.
,
Liu
,
M.-J.
, and
Cheng
,
Y.-X.
,
2009
, “
Thermal Analysis of Loop Heat Pipe Used for High-Power LED
,”
Thermochim. Acta
,
493
(
1
), pp.
25
29
.
29.
Lin
,
B.
,
Xie
,
R.
, and
Tao
,
L.
,
2020
, “
Review of Cryogenic Loop Heat Pipe Technology
,”
J. Eng. Therm. Energy Power
,
35
(
3
), pp.
1
12
.
30.
Yanchao
,
X.
,
Wei
,
Y.
, and
Jindong
,
L.
,
2005
, “
The One-Dimensional Analysis of Heat and Mass Transfer Processes in Loop Heat Pipe Evaporator
,”
Chin. Space Sci. Technol.
,
25
(
2
), pp.
16
21
.
31.
Washburn
,
W. E.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.
32.
Lucas
,
R.
,
1918
, “
Ueber das Zeitgesetz des Kapillaren Aufstiegs von Fl¨Ussigkeiten
,”
Kolloid Z.
,
23
(
1
), pp.
15
22
.
33.
Nakamura
,
K.
,
Odagiri
,
K.
, and
Nagano
,
H.
,
2016
, “
Study on a Loop Heat Pipe for a Long-Distance Heat Transport Under Anti-Gravity Condition
,”
Appl. Therm. Eng.
,
107
, pp.
167
174
.
34.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
, 3rd ed.,
J. N.
Israelachvili
, ed.,
Academic Press
,
Boston, MA
, pp.
253
280
.
You do not currently have access to this content.