Abstract

This study investigated the feasibility of harvesting algae biomass using an original and novel method that uses low-grade waste heat with an integrated heat exchanger, evaporation tank, and reservoir system. Several experiments were conducted. The experimental results showed good agreement with theoretical results estimated with a stagnant-film model. As the inlet gas temperature increased from 175 to 245 °C, the evaporation rate increased by 100%, while an 85% increase was achieved as the air speed increased from 0 to 3.5 m/s. It was also observed that the evaporation rate slightly decreased when doubling the volume of the reservoir while it is independent of the duration of experiment. The amount of lipid extracted from centrifuged algae was slightly higher than algae harvested by evaporation. However, the total amount of fatty acid methyl esters (FAMEs) was significantly higher, by 24%, for the algae harvested by evaporation compared with centrifugation. The FAMEs profiles were the same for both methods and about 98% of FAMEs were C-16 and C-18 carbon chains which are the main components of the algal biodiesel. The method has a potential to be developed into a cost-effective and energy efficient algal biomass dewatering method. It uses low-grade waste heat, which is cheap and readily available, and has simple and inexpensive structure. It was also demonstrated that modifying the proposed system, by adding a second heat exchanger in series, improved the water evaporation rate by 58–121%, depending on the operating conditions.

References

1.
Mata
,
T. M.
,
Martins
,
A. A.
, and
Caetano
,
N. S.
,
2010
, “
Microalgae for Biodiesel Production and Other Applications: A Review
,”
Renew. Sust. Energy Rev.
,
14
(
1
), pp.
217
232
.
2.
Borowitzka
,
M. A.
,
2013
, “Species and Strain Selection,”
Algae for Biofuels and Energy
,
M. A.
Borowitzka
, and
N. R.
Moheimani
, eds.,
Springer
,
New York
, p.
288
.
3.
Singh
,
A.
,
Nigam
,
P. S.
, and
Murphy
,
J. D.
,
2011
, “
Renewable Fuels From Algae: An Answer to Debatable Land Based Fuels
,”
Bioresour. Technol.
,
102
(
1
), pp.
10
16
.
4.
Wang
,
B.
,
Li
,
Y.
,
Wu
,
N.
, and
Lan
,
C. Q.
,
2008
, “
CO2 Bio-Mitigation Using Microalgae
,”
Appl. Microbiol. Biotechnol.
,
79
(
5
), pp.
707
718
.
5.
Banerjee
,
A.
,
Sharma
,
R.
,
Chisti
,
Y.
, and
Banerjee
,
U. C.
,
2002
, “
Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals
,”
Crit. Rev. Biotechnol.
,
22
(
3
), pp.
245
279
.
6.
Chisti
,
Y.
,
2007
, “
Biodiesel From Microalgae
,”
Biotechnol. Adv.
,
25
(
3
), pp.
294
306
.
7.
Clark
,
J. H.
,
Deswarte
,
F. E. I.
, and
Farmer
,
T. J.
,
2009
, “
The Integration of Green Chemistry Into Future Biorefineries
,”
Biofuels, Bioproducts Biorefining
,
3
(
1
), pp.
72
90
.
8.
Lam
,
M. K.
,
Khoo
,
C. G.
, and
Lee
,
K. T.
,
2019
,
Scale-up and Commercialization of Algal Cultivation and Biofuels Production
,
Biofuels From Algae, Elsevier
,
Amsterdam, The Netherlands
, pp.
475
506
.
9.
Singh
,
G.
, and
Patidar
,
S. K.
,
2018
, “
Microalgae Harvesting Techniques: A Review
,”
J. Environ. Manage.
,
217
, pp.
499
508
.
10.
Narendra
,
M. V.
,
Shakti
,
M.
,
Amitesh
,
S.
, and
Bhartendu
,
N. M.
,
2010
, “
Prospective of Biodiesel Production Utilizing Microalgae as the Cell Factories: A Comprehensive Discussion
,”
Afr. J. Biotechnol.
,
9
(
10
), pp.
1402
1411
.
11.
McCausland
,
M. A.
,
Braun
,
M. R.
,
Barrett
,
S. M.
,
Diemar
,
J. A.
, and
Heasman
,
M. P.
,
1999
, “
Evaluation of Live Microalgae and Microbial Pastes as Supplementary Food for Pacific Oysters
,”
Aquaculture
,
174
(
3–4
), pp.
323
342
.
12.
Bubrick
,
P.
,
1991
, “
Production of Astaxanthin From Haematococcus
,”
Bioresour. Technol.
,
38
(
2–3
), pp.
237
239
.
13.
Greenwell
,
H. C.
,
Laurens
,
L. M. L.
,
Shields
,
R. J.
,
Lovitt
,
R. W.
, and
Flynn
,
K. J.
,
2010
, “
Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenges
,”
J. R. Soc. Interface
,
7
(
46
), pp.
703
726
.
14.
Amer
,
L.
,
Adhikari
,
B.
, and
Pellegrino
,
J.
,
2011
, “
Technoeconomic Analysis of Five Microalgae-to-Biofuels Processes of Varying Complexity
,”
Bioresour. Technol.
,
102
(
20
), pp.
9350
9359
.
15.
Slade
,
R.
, and
Bauen
,
A.
,
2013
, “
Micro-Algae Cultivation for Biofuels: Cost, Energy Balance, Environmental Impacts and Future Prospects
,”
Biomass Bioenergy
,
53
, pp.
29
38
.
16.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
268
289
.
17.
Tangjitsitcharoen
,
S.
,
Ratanakuakangwan
,
S.
,
Khonmeak
,
M.
, and
Fuangworawong
,
N.
,
2013
, “
Investigation of Regenerative and Recuperative Burners for Different Sizes of Reheating Furnaces
,”
Int. J. Mech. Mech. Eng.
,
7
(
10
), pp.
2027
2031
.
18.
Sen
,
M.
,
2006
,
Basic Mechanical Engineering
,
Laxmi Publications
,
New Delhi, India
.
19.
Goodarzi
,
S.
,
Javaran
,
E. J.
,
Rahnama
,
M.
, and
Ahmadi
,
M.
,
2019
, “
Techno-Economic Evaluation of a Multi Effect Distillation System Driven by Low-Temperature Waste Heat From Exhaust Flue Gases
,”
Desalination
,
460
, pp.
64
80
.
20.
Teke
,
I.
,
Ağra
,
Ö
,
Atayılmaz
,
ŞÖ
, and
Demir
,
H.
,
2010
, “
Determining the Best Type of Heat Exchangers for Heat Recovery
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
577
583
.
21.
Xue
,
Y.
,
Du
,
X.
,
Ge
,
Z.
, and
Yang
,
L.
,
2018
, “
Study on Multi-Effect Distillation of Seawater With Low-Grade Heat Utilization of Thermal Power Generating Unit
,”
Appl. Therm. Eng.
,
141
, pp.
589
599
.
22.
Ghalavand
,
Y.
,
Hatamipour
,
M. S.
, and
Rahimi
,
A.
,
2015
, “
A Review on Energy Consumption of Desalination Processes
,”
Desalin. Water Treat.
,
54
(
6
), pp.
1526
1541
.
23.
Rahimi
,
B.
,
May
,
J.
,
Christ
,
A.
,
Regenauer-Lieb
,
K.
, and
Chua
,
H. T.
,
2015
, “
Thermo-Economic Analysis of Two Novel Low Grade Sensible Heat Driven Desalination Processes
,”
Desalination
,
365
, pp.
316
328
.
24.
Garoma
,
T.
, and
Yazdi
,
R. E.
,
2021
, “
Algal Biomass Harvesting Using Low-Grade Waste Heat: Evaluation of Overall Heat Transfer Coefficient in a Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p. 014501.
25.
Bligh
,
E. G.
, and
Dyer
,
W. J.
,
1959
, “
A Rapid Method of Total Lipid Extraction and Purification
,”
Canad. J. Biochem. Physiol.
,
37
(
8
), pp.
911
917
.
26.
Supraja
,
K. V.
,
Behera
,
B.
, and
Paramasivan
,
B.
,
2020
, “
Optimization of Process Variables on Two-Step Microwave-Assisted Transesterification of Waste Cooking Oil
,”
Environ. Sci. Pollution Res.
,
27
, pp.
27244
27255
.
27.
Munari
,
F.
,
Cavagnino
,
D.
, and
Cadoppi
,
A.
,
2007
,
Determination of Free and Total Glycerin in Pure Biodiesel (B100) by GC in Compliance With EN 14105
,” Thermo Fisher Scientific, Application Note, 10215.
28.
Jensen
,
M. E.
,
2010
, “
Estimating Evaporation From Water Surfaces
,”
Proceedings of CSU/ARS Evapotranspiration Workshop
,
Fort Collins, CO
, pp.
1
27
.
29.
Brutsaert
,
W.
,
2013
,
Evaporation Into the Atmosphere: Theory, History and Applications
,
Springer Science & Business Media
,
Heidelberg, Germany
.
30.
Mills
,
A. F.
, and
Coimbra
,
C.
,
2016
,
Heat Transfer
,
Temporal Publishing, LLC
,
San Diego, CA
.
31.
Bevan
,
A.
,
2013
,
Statistical Data Analysis for the Physical Sciences
,
Cambridge University Press
,
New York
.
32.
Davarzani
,
H.
,
Smits
,
K.
,
Tolene
,
R. M.
, and
Illangasekare
,
T.
,
2014
, “
Study of the Effect of Wind Speed on Evaporation From Soil Through Integrated Modeling of the Atmospheric Boundary Layer and Shallow Subsurface
,”
Water Resour. Res.
,
50
(
1
), pp.
661
680
.
33.
Abdelrahman
,
H. A.
, and
Boyd
,
C. E.
,
2018
, “
Effects of Mechanical Aeration on Evaporation Rate and Water Temperature in Aquaculture Ponds
,”
Aquaculture Res.
,
49
(
6
), pp.
2184
2192
.
34.
Tarjuelo
,
J.
,
Ortega
,
J.
,
Montero
,
J.
, and
De Juan
,
J.
,
2000
, “
Modelling Evaporation and Drift Losses in Irrigation With Medium Size Impact Sprinklers Under Semi-Arid Conditions
,”
Agricultural Water Manage.
,
43
(
3
), pp.
263
284
.
35.
El-Dessouky
,
H.
,
Alatiqi
,
I.
,
Bingulac
,
S.
, and
Ettouney
,
H.
,
1998
, “
Steady-State Analysis of the Multiple Effect Evaporation Desalination Process
,”
Chem. Eng. Technol.
,
21
(
5
), pp.
437
451
.
36.
Cheng
,
J.
,
Huang
,
R.
,
Li
,
T.
,
Zhou
,
J.
, and
Cen
,
K.
,
2014
, “
Biodiesel From Wet Microalgae: Extraction With Hexane After the Microwave-Assisted Transesterification of Lipids
,”
Bioresour. Technol.
,
170
, pp.
69
75
.
37.
Zhu
,
K.
,
Jin
,
H.
,
He
,
Z.
,
Zhu
,
Q.
, and
Wang
,
B.
,
2006
, “
A Continuous Method for the Large-Scale Extraction of Plasmid DNA by Modified Boiling Lysis
,”
Nat. Protoc.
,
1
(
6
), p.
3088
.
38.
Li
,
F.
,
Liu
,
Z.
,
Ni
,
Z.
, and
Wang
,
H.
,
2019
, “
Effect of Biodiesel Components on Its Lubrication Performance
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
3681
3687
.
39.
Islam
,
M. A.
,
Brown
,
R. J.
,
O’Hara
,
I.
,
Kent
,
M.
, and
Heimann
,
K.
,
2014
, “
Effect of Temperature and Moisture on High Pressure Lipid/Oil Extraction From Microalgae
,”
Energy Convers. Manage.
,
88
, pp.
307
316
.
40.
Koberg
,
M.
,
Cohen
,
M.
,
Ben-Amotz
,
A.
, and
Gedanken
,
A.
,
2011
, “
Bio-Diesel Production Directly From the Microalgae Biomass of Nannochloropsis by Microwave and Ultrasound Radiation
,”
Bioresour. Technol.
,
102
(
5
), pp.
4265
4269
.
41.
Johnson
,
M. B.
, and
Wen
,
Z.
,
2009
, “
Production of Biodiesel Fuel From the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass
,”
Energy Fuels
,
23
(
10
), pp.
5179
5183
.
You do not currently have access to this content.