Abstract

Air conditioning (AC) systems consume the maximum proportion of the total electricity used in the building sector. The demand for AC systems is expected to increase exponentially in the coming years due to various reasons such as climate change, and an increase in affordability and living floor space. A membrane-based liquid desiccant AC system along with energy recovery ventilating equipment is considered as a prospective alternative to the conventional air conditioning system (CACS). It has the potential to meet the increasing current and future AC demand in a sustainable manner. Its efficiency and energy-saving potential with respect to CACS depend on the performance of the membrane-based dehumidifier, regenerator, and energy recovery ventilating equipment, commonly referred to as membrane energy exchangers (MEEs). MEE is an indirect exchanger type in which a membrane separates the working streams. This intermediate membrane creates an additional resistance for the heat and mass transfer processes in the MEE. To reduce the resistance, this study experimentally and numerically investigate the influence of ultrasound on the performance of the MEE for dehumidification, humidification (applicable for membrane-based evaporative cooling and desiccant regeneration devices), and energy recovery processes. It is found that the vibration due to ultrasound has the potential to improve the mass transfer performance of MEE by the resistance at the air-membrane interface.

References

1.
International Energy Agency
,
2018
, “
The Future of Cooling – Opportunities for Energy – Efficient Air Conditioning
,” https://www.iea.org/reports/the-future-of-cooling, Accessed July 21, 2021.
2.
International Energy Agency
,
2021
, “
Cooling Emissions and Policy Synthesis Report
,” Benefits of Cooling Efficiency and the Kigali Amendment, https://www.iea.org/reports/cooling-emissions-and-policy-synthesis-report, Accessed July 21, 2021.
3.
International Energy Agency
,
2020
, “
Meeting the Increasing Global Demand for Cooling – Part of Today in the Lab – Tomorrow in Energy?
https://www.iea.org/articles/meeting-the-increasing-global-demand-for-cooling, Accessed July 21, 2021.
4.
Goetzler
,
W.
,
Zogg
,
R.
,
Young
,
J.
, and
Johnson
,
C.
,
2014
, “
Alternatives to Vapor-Compression HVAC Technology
,”
ASHRAE J.
,
56
(
10
), pp.
12
23
. https://www.ashrae.org/file%20library/communities/committees/standing%20committees/refrigeration%20committee/alternatives-to-vapor-compression-hvac-william-goetler.pdf, Accessed July 21, 2021.
5.
Gurubalan
,
A.
,
Maiya
,
M. P.
, and
Geoghegan
,
P. J.
,
2019
, “
A Comprehensive Review of Liquid Desiccant Air Conditioning System
,”
Appl. Energy
,
254
, p.
113673
.
6.
Gurubalan
,
A.
, and
Simonson
,
C. J.
,
2021
, “
A Comprehensive Review of Dehumidifiers and Regenerators for Liquid Desiccant air Conditioning System
,”
Energy Convers. Manage.
,
240
, p.
114234
.
7.
Gurubalan
,
A.
,
Maiya
,
M. P.
, and
Tiwari
,
S.
,
2020
, “
Performance Characterization of a Novel Membrane-Based Liquid Desiccant Air Conditioning System
,”
Int. J. Refrig.
,
120
, pp.
445
459
.
8.
Abdel-Salam
,
A. H.
, and
Simonson
,
C. J.
,
2014
, “
Annual Evaluation of Energy, Environmental and Economic Performances of a Membrane Liquid Desiccant Air Conditioning System With/Without ERV
,”
Appl. Energy
,
116
, pp.
134
148
.
9.
Abdel-Salam
,
M. R. H.
,
Ge
,
G.
,
Fauchoux
,
M.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2014
, “
State-of-the-Art in Liquid-to-Air Membrane Energy Exchangers (LAMEEs): A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
700
728
.
10.
Ren
,
H.
,
Ma
,
Z.
,
Liu
,
J.
,
Gong
,
X.
, and
Li
,
W.
,
2019
, “
A Review of Heat and Mass Transfer Improvement Techniques for Dehumidifiers and Regenerators of Liquid Desiccant Cooling Systems
,”
Appl. Therm. Eng.
,
162
, p.
114271
.
11.
Gurubalan
,
A.
,
Geoghegan
,
P. J.
,
Maiya
,
M. P.
, and
Simonson
,
C. J.
,
2014
, “
Performance Improvement of Mass Transfer Through Membrane Using Ultrasound for HVAC Application
,”
Proceedings of the ASME 2020 Heat Transfer Summer Conference HT2020
,
Virtual, Online
,
July 13–15
, ASME Paper No. HT2020-905.
12.
Gurubalan
,
A.
,
2019
, “
Numerical and Experimental Investigations of Membrane-Based Liquid Desiccant Dehumidifier and Hybrid Air Conditioning System
,”
Ph.D. dissertation
,
Indian Institute of Technology Madras
,
Chennai, India
.
13.
Holman
,
J. P.
,
2012
,
Experimental Method for Engineers
, 8th ed.,
McGraw-Hill
,
New York
.
14.
ASHRAE
,
2009
, “
Climatic Design Information
,” ASHRAE Handbook – Fundamentals (SI Edition), The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, pp. 14.1–14.27.
15.
Gurubalan
,
A.
,
Maiya
,
M. P.
, and
Tiwari
,
S.
,
2017
, “
Performance Characterization of Membrane Dehumidifier With Desiccants in Flat-Plate Arrangement
,”
Energy Build.
,
156
, pp.
151
162
.
16.
Gurubalan
,
A.
,
Maiya
,
M. P.
, and
Geoghegan
,
P. J.
,
2020
, “
Tri-generation of Air Conditioning, Refrigeration and Potable Water by a Novel Absorption Refrigeration System Equipped With Membrane Dehumidifier
,”
Appl. Therm. Eng.
,
181
, p.
115861
.
17.
Hemingson
,
H. B.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2011
, “
Steady-State Performance of a Run-Around Membrane Energy Exchanger (RAMEE) for a Range of Outdoor Air Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1814
1824
.
18.
Ghadiri Moghaddam
,
D.
,
Oghabi
,
A.
,
Ge
,
G.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2013
, “
Numerical Model of a Small-Scale Liquid-to-Air Membrane Energy Exchanger: Parametric Study of Membrane Resistance and Air Side Convective Heat Transfer Coefficient
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
245
258
.
19.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamental of Heat and Mass Transfer
, Seventh ed.,
Wiley India Pvt Ltd
.
20.
Ge
,
G.
,
Ghadiri Moghaddam
,
D.
,
Abdel-Salam
,
A. H.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2014
, “
Comparison of Experimental Data and a Model for Heat and Mass Transfer Performance of a Liquid-to-Air Membrane Energy Exchanger (LAMEE) When Used for Air Dehumidification and Salt Solution Regeneration
,”
Int. J. Heat Mass Transfer
,
68
, pp.
119
131
.
21.
Albdoor
,
A. K.
,
Ma
,
Z.
,
Cooper
,
P.
,
Ren
,
H.
, and
Al-Ghazzawi
,
F.
,
2020
, “
Thermodynamic Analysis and Design Optimisation of a Cross Flow Air to Air Membrane Enthalpy Exchanger
,”
Energy
,
202
, p.
117691
.
22.
Sebai
,
R.
,
Chouikh
,
R.
, and
Guizani
,
A.
,
2014
, “
Cross-Flow Membrane-Based Enthalpy Exchanger Balanced and Unbalanced Flow
,”
Energy Convers. Manage.
,
87
, pp.
19
28
.
23.
Wexler
,
A.
,
1971
, “
Vapour Pressure Formulation for Water in Range 0 to 100 °C
,”
J. Res. Nat. Bur. Stand.
,
80
, pp.
775
785
.
24.
Annadurai
,
G.
,
Tiwari
,
S.
, and
Maiya
,
M. P.
,
2018
, “
Experimental Performance Comparison of Adiabatic and Internally-Cooled Membrane Dehumidifiers
,”
Int. J. Low Carbon Technol.
,
13
(
3
), pp.
240
249
.
25.
Gurubalan
,
A.
,
Maiya
,
M. P.
, and
Tiwari
,
S.
,
2019
, “
Experiments on a Novel Membrane-Based Liquid Desiccant Dehumidifier for Hybrid Air Conditioner
,”
Int. J. Refrig.
,
108
, pp.
271
282
.
26.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
27.
Legay
,
M.
,
Gondrexon
,
N.
,
Le Person
,
S.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
(
17
), p.
670108
.
28.
Gondrexon
,
N.
,
Rousselet
,
Y.
,
Legay
,
M.
,
Boldo
,
P.
,
Le Person
,
S.
, and
Bontemps
,
A.
,
2010
, “
Intensification of Heat Transfer Process: Improvement of Shell-and-Tube Heat Exchanger Performances by Means of Ultrasound
,”
Chem. Eng. Process.
,
49
(
9
), pp.
936
942
.
29.
Abdel-Salam
,
M. R. H.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Design and Testing of a Novel 3-Fluid Liquid-to-air Membrane Energy Exchanger (3-Fluid LAMEE)
,”
Int. J. Heat Mass Transfer
,
92
, pp.
312
329
.
30.
Oghabi
,
A.
,
2015
, “
Measurement of Heat Transfer Enhancement and Pressure Drop for Turbulence Enhancing Inserts in Liquid-to-Air Membrane Energy Exchangers (LAMEEs)
,”
M.Sc. dissertation
,
University of Saskatchewan
,
Canada
. https://harvest.usask.ca/handle/10388/ETD-2014-04-1452
You do not currently have access to this content.