Abstract

In view of the problem that the boil-off gas (BOG) generated by small liquefied natural gas (LNG) ships affects the transportation safety, three BOG reliquefaction systems are improved, which are as follows: case 1: serial nitrogen expansion reliquefaction system (N2-BOG); case 2: single mixed refrigerant reliquefaction system (SMR-BOG); and case 3: propane precooled mixed refrigerant reliquefaction system (C3MR-BOG). The basic process is simulated in aspen plus and combined with the mathematical model built up in matlab where the three cycles are optimized with the specific power consumption (SPC) as the objective function. The results show that the SPC of three cases are 0.8021 kWh/kg (LNG), 0.4150 kWh/kg (LNG), and 0.5063 kWh/kg (LNG); the coefficient of performance (COP) of cases 1, 2, and 3 are 0.20, 0.39, and 0.30; the exergy efficiency of 36.56%, 70.66%, and 57.93% along with the total product cost of 89.00 $/h, 55.73 $/h, and 77.54 $/h are achieved in Cases 1–3, respectively. In addition, the overall exergy destruction of the cycles and each equipment are discussed, and the matching of the cold and heat sources of the multistream heat exchanger in the three systems is analyzed. In conclusion, under the condition that the BOG mass flowrate is 350 kg/h, the improved SMR-BOG has advantages on thermodynamic performance and economic analysis, which makes it a better choice.

References

1.
Li
,
Q. Y.
, and
Ju
,
Y. L.
,
2010
, “
Design and Analysis of Liquefaction Process for Offshore Associated Gas Resources
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2518
2525
.
2.
Krikkis
,
R. N.
,
2018
, “
A Thermodynamic and Heat Transfer Model for LNG Ageing During Ship Transportation. Towards an Efficient Boil-Off Gas Management
,”
Cryogenics
,
92
(
11
), pp.
76
83
.
3.
Yin
,
L.
, and
Ju
,
Y. L.
,
2019
, “
Comparison and Analysis of Two Nitrogen Expansion Cycles for BOG Re-Liquefaction Systems for Small LNG Ships
,”
Energy
,
172
(
48
), pp.
769
776
.
4.
Tan
,
H.
,
Shan
,
S.
,
Nie
,
Y.
, and
Zhao
,
Q.
,
2018
, “
A New Boil-Off Gas Re-Liquefaction System for LNG Carriers Based on Dual Mixed Refrigerant Cycle
,”
Cryogenics
,
92
(
12
), pp.
84
92
.
5.
Kurle
,
Y. M.
,
Wang
,
S.
, and
Xu
,
Q.
,
2015
, “
Simulation Study on Boil-Off Gas Minimization and Recovery Strategies at LNG Exporting Terminals
,”
Appl. Energy
,
156
(
60
), pp.
628
641
.
6.
Primabudi
,
E.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Multi-Objective Optimization of Propane Pre-Cooled Mixed Refrigerant (C3MR) LNG Process
,”
Energy
,
185
(
33
), pp.
492
504
.
7.
Ghorbani
,
B.
,
Hamedi
,
M.-H.
,
Shirmohammadi
,
R.
,
Hamedi
,
M.
, and
Mehrpooya
,
M.
,
2016
, “
Exergoeconomic Analysis and Multi-Objective Pareto Optimization of the C3MR Liquefaction Process
,”
Sustain. Energy Technol. Assess.
,
17
(
6
), pp.
56
67
.
8.
Hajji
,
A.
,
Chahartaghi
,
M.
, and
Kahani
,
M.
,
2019
, “
Thermodynamic Analysis of Natural Gas Liquefaction Process With Propane Pre-Cooled Mixed Refrigerant Process (C3MR)
,”
Cryogenics
,
103
(
8
), p.
102978
.
9.
Kwak
,
D.-H.
,
Heo
,
J.-H.
,
Park
,
S.-H.
,
Seo
,
S.-J.
, and
Kim
,
J.-K.
,
2018
, “
Energy-Efficient Design and Optimization of Boil-Off Gas (BOG) Re-Liquefaction Process for Liquefied Natural Gas (LNG)-Fuelled Ship
,”
Energy
,
148
(
71
), pp.
915
929
.
10.
Yuan
,
T.
,
Song
,
C.
,
Bao
,
J.
,
Zhang
,
N.
,
Zhang
,
X.
, and
He
,
G.
,
2019
, “
Minimizing Power Consumption of Boil Off Gas (BOG) Recondensation Process by Power Generation Using Cold Energy in Liquefied Natural gas (LNG) Regasification Process
,”
J. Cleaner Prod.
,
238
(
94
), p.
117949
.
11.
Romero Gómez
,
J.
,
Romero Gómez
,
M.
,
Lopez Bernal
,
J.
, and
Baaliña Insua
,
A.
,
2015
, “
Analysis and Efficiency Enhancement of a Boil-Off Gas Reliquefaction System With Cascade Cycle on Board LNG Carriers
,”
Energy Convers. Manage.
,
94
(
10
), pp.
261
274
.
12.
Oh
,
J.-S.
,
Binns
,
M.
,
Park
,
S.
, and
Kim
,
J.-K.
,
2016
, “
Improving the Energy Efficiency of Industrial Refrigeration Systems
,”
Energy
,
112
(
73
), pp.
826
835
.
13.
Chang
,
H.-M.
,
Lim
,
H. S.
, and
Choe
,
K. H.
,
2014
, “
Thermodynamic Design of Natural Gas Liquefaction Cycles for Offshore Application
,”
Cryogenics
,
63
(
14
), pp.
114
121
.
14.
Ding
,
H.
,
Sun
,
H.
, and
He
,
M.
,
2016
, “
Optimisation of Expansion Liquefaction Processes Using Mixed Refrigerant N2–CH4
,”
Appl. Therm. Eng.
,
93
(
108
), pp.
1053
1060
.
15.
Aasadnia
,
M.
, and
Mehrpooya
,
M.
,
2018
, “
Large-Scale Liquid Hydrogen Production Methods and Approaches: A Review
,”
Appl. Energy
,
212
(
5
), pp.
57
83
.
16.
Qyyum
,
M. A.
,
Duong
,
P. L. T.
,
Minh
,
L. Q.
,
Lee
,
S.
, and
Lee
,
M.
,
2019
, “
Dual Mixed Refrigerant LNG Process: Uncertainty Quantification and Dimensional Reduction Sensitivity Analysis
,”
Appl. Energy
,
250
(
70
), pp.
1446
1456
.
17.
Gómez
,
J. R.
,
Gómez
,
M. R.
,
Garcia
,
R. F.
, and
Catoira
,
A. D. M.
,
2013
, “
On Board LNG Reliquefaction Technology: A Comparative Study
,”
Pol. Marit. Res.
,
21
(
1
), pp.
77
88
.
18.
Li
,
Y.
, and
Li
,
Y.
,
2016
, “
Dynamic Optimization of the Boil-Off Gas (BOG) Fluctuations at an LNG Receiving Terminal
,”
J. Nat. Gas Sci. Eng.
,
30
(
32
), pp.
322
330
.
19.
Lin
,
W.
,
Xiong
,
X.
, and
Gu
,
A.
,
2018
, “
Optimization and Thermodynamic Analysis of a Cascade PLNG (Pressurized Liquefied Natural Gas) Process With CO2 Cryogenic Removal
,”
Energy
,
161
(
59
), pp.
870
877
.
20.
Qyyum
,
M. A.
,
Long
,
N. V. D.
,
Minh
,
L. Q.
, and
Lee
,
M.
,
2018
, “
Design Optimization of Single Mixed Refrigerant LNG Process Using a Hybrid Modified Coordinate Descent Algorithm
,”
Cryogenics
,
89
(
15
), pp.
131
140
.
21.
Khan
,
M. S.
,
Karimi
,
I. A.
, and
Lee
,
M.
,
2016
, “
Evolution and Optimization of the Dual Mixed Refrigerant Process of Natural Gas Liquefaction
,”
Appl. Therm. Eng.
,
96
(
34
), pp.
320
329
.
22.
Khaljani
,
M.
,
Khoshbakhti Saray
,
R.
, and
Bahlouli
,
K.
,
2015
, “
Comprehensive Analysis of Energy, Exergy and Exergo-Economic of Cogeneration of Heat and Power in a Combined Gas Turbine and Organic Rankine Cycle
,”
Energy Convers. Manage.
,
97
(
7
), pp.
154
165
.
23.
Pan
,
Z.
,
Zhang
,
L.
,
Zhang
,
Z.
,
Shang
,
L.
, and
Chen
,
S.
,
2017
, “
Thermodynamic Analysis of KCS/ORC Integrated Power Generation System With LNG Cold Energy Exploitation and CO2 Capture
,”
J. Nat. Gas Sci. Eng.
,
46
(
17
), pp.
188
198
.
24.
Noh
,
Y.
,
Kim
,
J.
,
Kim
,
J.
, and
Chang
,
D.
,
2018
, “
Economic Evaluation of BOG Management Systems With LNG Cold Energy Recovery in LNG Import Terminals Considering Quantitative Assessment of Equipment Failures
,”
Appl. Therm. Eng.
,
143
(
96
), pp.
1034
1045
.
25.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
26.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
27.
Zhang
,
L.
,
Pan
,
Z.
,
Yu
,
J.
,
Zhang
,
N.
, and
Zhang
,
Z.
,
2019
, “
Multiobjective Optimization for Exergoeconomic Analysis of an Integrated Cogeneration System
,”
Int. J. Energy Res.
,
43
(
5
), pp.
1868
1881
.
28.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME. J. Energy Resour. Technol.
,
140
(
12
), p.
122005
.
29.
He
,
T.
, and
Ju
,
Y.
,
2015
, “
Optimal Synthesis of Expansion Liquefaction Cycle for Distributed-Scale LNG (Liquefied Natural gas) Plant
,”
Energy
,
88
(
26
), pp.
268
280
.
30.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
31.
He
,
T.
,
Liu
,
Z.
,
Ju
,
Y.
, and
Parvez
,
A. M.
,
2019
, “
A Comprehensive Optimization and Comparison of Modified Single Mixed Refrigerant and Parallel Nitrogen Expansion Liquefaction Process for Small-Scale Mobile LNG Plant
,”
Energy
,
167
(
1
), pp.
1
12
.
32.
Lee
,
I.
,
Park
,
J.
,
You
,
F.
, and
Moon
,
I.
,
2019
, “
A Novel Cryogenic Energy Storage System With LNG Direct Expansion Regasification: Design, Energy Optimization, and Exergy Analysis
,”
Energy
,
173
(
47
), pp.
691
705
.
You do not currently have access to this content.