Abstract

Internal cooling and film cooling, as two main cooling methods in modern gas turbines, work together to protect the high-temperature components of gas turbines. This paper presents the results of a computational study on cooling performance for a flat plate with both film cooling and internal cooling using a conjugate heat transfer analysis. Three internal delivery channel geometries, smooth channel, channel roughened by square ribs (SR), and channel roughened by crescent ribs (CR), are studied with two film cooling geometries, cylindrical hole, and sister holes (SS). The respective conjugate cooling performances are compared. Detailed flow and heat transfer characteristics are presented and discussed. Results show that both film cooling effectiveness and internal cooling performances are influenced by the delivery channel geometry near the hole inlets. The sink flow effects of film cooling enhance the heat transfer coefficient near the film cooling hole inlet. At the same time, film cooling performance is affected by the internal channel as the flow inside the film cooling hole is influenced by the ribs near the hole inlets. When using sister holes, ribs in the internal channels make the anti-kidney vortex structure created by sister holes more effective by changing the mass flow distribution among the three holes.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Han
,
J.-C.
, and
Chen
,
H.-C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
226
248
.
3.
Lei
,
J.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
9
), p.
091901
.
4.
Jiang
,
G.
,
Gao
,
J.
, and
Shi
,
X.
,
2019
, “
Flow and Heat Transfer Characteristics of Mist/Steam Two-Phase Flow in the U-Shaped Cooling Passage With 60 deg. Ribs
,”
Int. Commun. Heat Mass Transfer
,
105
, pp.
73
83
.
5.
Zheng
,
N.
,
Liu
,
P.
,
Shan
,
F.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Effects of Rib Arrangements on the Flow Pattern and Heat Transfer in an Internally Ribbed Heat Exchanger Tube
,”
Int. J. Therm. Sci.
,
101
, pp.
93
105
.
6.
Alkhamis
,
N. Y.
,
Rallabandi
,
A. P.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With V-Shaped Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
111901
.
7.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Sunden
,
B.
,
2014
, “
Flow Structure and Heat Transfer in a Square Passage With Offset Mid-Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
71
, pp.
44
56
.
8.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
9.
Wang
,
C.
,
Zhang
,
J.
, and
Zhou
,
J.
,
2016
, “
Optimization of a Fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm
,”
Aerosp. Sci. Technol.
,
58
, pp.
18
25
.
10.
Singh
,
A. K.
,
Singh
,
K.
,
Singh
,
D.
, and
Sahoo
,
N.
,
2021
, “
Large Eddy Simulations for Film Cooling Assessment of Cylindrical and Laidback Fan-Shaped Holes With Reverse Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031027
.
11.
Zhang
,
X. Z.
, and
Hassan
,
I.
,
2006
, “
Film Cooling Effectiveness for an Advanced-Louver Cooling Scheme for Gas Turbines
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
4
), pp.
754
763
.
12.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
13.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
14.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer Part A Appl.
,
55
(
7
), pp.
634
653
.
15.
Zhu
,
R.
,
Zhang
,
G.
,
Li
,
S.
, and
Xie
,
G.
,
2020
, “
Combined-Hole Film Cooling Designs Based on the Construction of Anti-Kidney Vortex Structure: A Review
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
030801
.
16.
Chen
,
Z.
,
Zhang
,
Z.
,
Li
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Vortex Dynamics Based Analysis of Internal Crossflow Effect on Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
145
, p.
118757
.
17.
Ye
,
L.
,
Liu
,
C.-L.
,
Zhu
,
H.-R.
, and
Luo
,
J.-X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4818
.
18.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2013
, “
Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow
,”
ASME J. Turbomach.
,
135
(
2
), p.
021016
.
19.
Park
,
C. W.
,
Yoon
,
C.
, and
Lau
,
S. C.
,
1998
, “
Local Heat (Mass) Transfer in a Rotating Square Channel With Ejection Holes
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
4
), pp.
589
595
.
20.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness-Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
21.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness-Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.
22.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
23.
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
, and
Luo
,
J.-X.
,
2017
, “
Investigation on the Effects of Rib Orientation Angle on the Film Cooling With Ribbed Cross-Flow Coolant Channel
,”
Int. J. Heat Mass Transfer
,
115
, pp.
379
394
.
24.
Liu
,
C. L.
,
Li
,
B. R.
,
Ye
,
L.
,
Zhu
,
H. R.
,
Zhang
,
C. X.
, and
Song
,
W.
,
2021
, “
Film Cooling Characteristics of Cross-Flow Coolant Passage With Various Relative Positions of Holes and Inclined Ribs
,”
Int. J. Therm. Sci.
,
167
, p.
106975
.
25.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2012
, “
Effects of Turbulence Promoters of Gas Turbine Blades on Film Cooling Performance
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
603
618
.
26.
Böttger
,
M.
,
Lange
,
M.
,
Mailach
,
R.
, and
Vogeler
,
K.
,
2020
, “
Experimental Study on the Influence of Film Cooling Hole Extraction on Heat Transfer and Flow Field in Internal Ribbed Cooling Channels of Turbine Blades
,”
ASME J. Turbomach.
,
142
(
10
), p.
101005
.
27.
Xie
,
G.
,
Liu
,
X.
, and
Yan
,
H.
,
2017
, “
Film Cooling Performance and Flow Characteristics of Internal Cooling Channels With Continuous/Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
105
, pp.
67
75
.
28.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2020
, “
Simulation of Air/Mist Cooling in a Conjugate, 3-D Gas Turbine Vane With Internal Passage and External Film Cooling
,”
Int. J. Heat Mass Transfer
,
160
, p.
120197
.
29.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Evaluation of CFD Simulations of Film Cooling Performance on a Turbine Vane Including Conjugate Heat Transfer Effects
,”
Int. J. Heat Fluid Flow
,
50
, pp.
279
286
.
30.
Lu
,
B.
,
Peng
,
W.
,
Jiang
,
P.-X.
,
Wang
,
J.
, and
Wang
,
Y.-P.
,
2017
, “
Experimental and Numerical Study of the Effect of Conjugate Heat Transfer on Film Cooling
,”
Exper. Heat Transfer
,
30
(
4
), pp.
355
368
.
31.
Wang
,
J.
,
Gu
,
C.
, and
Sunden
,
B. A.
,
2015
, “
Conjugated Heat Transfer Analysis of a Film Cooling Passage With Different Rib Configurations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
4
), pp.
841
860
.
32.
Zhu
,
R.
,
Simon
,
T. W.
, and
Xie
,
G.
,
2018
, “
Influence of Secondary Hole Injection Angle on Enhancement of Film Cooling Effectiveness With Horn-Shaped or Cylindrical Primary Holes
,”
Numer. Heat Transfer Part A Appl.
,
74
(
5
), pp.
1207
1227
.
33.
Zhu
,
R.
,
Lin
,
E.
,
Simon
,
T.
, and
Xie
,
G.
,
2021
, “
An Experimental Study of Sister Holes Film Cooling With Various Secondary-to-Primary Hole Diameter Ratios
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
012301
.
34.
Xie
,
G. N.
,
Liu
,
X. T.
,
Yan
,
H. B.
, and
Qin
,
J.
,
2017
, “
Turbulent Flow Characteristics and Heat Transfer Enhancement in a Square Channel With Various Crescent Ribs on One Wall
,”
Int. J. Heat Mass Transfer
,
115
, pp.
283
295
.
35.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.
36.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Investigation of Film Cooling Performance Through Variations in the Location of Discrete Sister Holes
,”
Appl. Therm. Eng.
,
107
, pp.
345
364
.
37.
Lu
,
X.
,
Jiang
,
P.
,
Sugishita
,
H.
,
Uechi
,
H.
, and
Suenaga
,
K.
,
2006
, “
Conjugate Heat Transfer Analysis of Film Cooling Flows
,”
J. Therm. Sci.
,
15
(
1
), pp.
85
91
.
38.
Wang
,
Z.
,
Liu
,
J. J.
, and
Zhang
,
C.
,
2013
, “
Multi-Field Coupling Analysis on the Film-Cooling of a Turbine Guide Vane
,”
ASME Turbo Expo
,
San Antonio, TX
, GT2013-94256.
You do not currently have access to this content.