Abstract

Active cooling is an effective thermal protection method for plates under high thermal loading. In this paper, characteristics of coupled heat transfer of aluminum alloy and titanium alloy plates with kerosene active cooling are studied numerically and experimentally. The effects of cooling channel spacing as well as the inlet parameters of kerosene on the maximum temperature and temperature uniformity of the plate are investigated with varied heat fluxes. Besides, the thermal resistance and flow resistance of kerosene cooling are also analyzed. The experimental results show that the 2a12-type aluminum alloy plate can be cooled to a maximum temperature of 460 K with kerosene cooling under a mass flowrate of 24.7 g/s and heat flux of 6–11 kW/m2. The numerical results show that the maximum temperature is mainly affected by the channel spacing and heat flux. Compared to the titanium alloy plate, the aluminum alloy plate is more likely to be affected by the coolant mass flowrate. In addition, the conductive thermal resistance of aluminum alloy plates is 0.0017–0.0079 m2 K/W and is 0.015–0.073 m2 K/W for titanium alloy plates. For both materials, conductive thermal resistance dominates the total thermal resistance of plates with active cooling.

References

1.
Youn
,
B.
, and
Mills
,
A. F.
,
1995
, “
Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft
,”
J. Thermophys. Heat Trans.
,
9
(
1
), pp.
136
143
.
2.
Wang
,
N.
,
Zhou
,
J.
,
Pan
,
Y.
, and
Wang
,
H.
,
2014
, “
Experimental Investigation on Flow Patterns of RP-3 Kerosene Under Sub-Critical and Supercritical Pressures
,”
Acta Astronaut.
,
94
(
2
), pp.
834
842
.
3.
Li
,
X. F.
,
Huai
,
X. L.
,
Cai
,
J.
,
Zhong
,
F. Q.
,
Fan
,
X. J.
, and
Guo
,
Z. X.
,
2011
, “
Convective Heat Transfer Characteristics of China RP-3 Aviation Kerosene at Supercritical Pressure
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2360
2366
.
4.
Ulas
,
A.
, and
Boysan
,
E.
,
2013
, “
Numerical Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
187
197
.
5.
Chen
,
Y.
,
Wang
,
Y.
,
Bao
,
Z. W.
,
Zhang
,
Q. Y.
, and
Li
,
X. Y.
,
2016
, “
Numerical Investigation of Flow Distribution and Heat Transfer of Hydrocarbon Fuel in Regenerative Cooling Panel
,”
Appl. Therm. Eng.
,
98
, pp.
628
635
.
6.
Sun
,
X.
,
Meng
,
H.
, and
Zheng
,
Y.
,
2019
, “
Asymmetric Heating and Buoyancy Effects on Heat Transfer of Hydrocarbon Fuel in a Horizontal Square Channel at Supercritical Pressures
,”
Aerosp. Sci. Technol.
,
93
, p.
105358
.
7.
Taddeo
,
L.
,
Gascoin
,
N.
,
Chetehouna
,
K.
,
Ingenito
,
A.
,
Stella
,
F.
,
Bouchez
,
M.
, and
Le Naour
,
B.
,
2017
, “
Experimental Study of Pyrolysis–Combustion Coupling in a Regeneratively Cooled Combustor: System Dynamics Analysis
,”
Aerosp. Sci. Technol.
,
67
, pp.
473
483
.
8.
Wang
,
J. X.
,
Li
,
Y. Z.
,
Liu
,
X. D.
,
Shen
,
C. Q.
,
Zhang
,
H. S.
, and
Xiong
,
K.
,
2021
, “
Recent Active Thermal Management Technologies for the Development of Energy-Optimized Aerospace Vehicles in China
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
1
27
.
9.
Nižetić
,
S.
,
Giama
,
E.
, and
Papadopoulos
,
A. M.
,
2018
, “
Comprehensive Analysis and General Economic-Environmental Evaluation of Cooling Techniques for Photovoltaic Panels, Part II: Active Cooling Techniques
,”
Energy Convers. Manag.
,
155
, pp.
301
323
.
10.
Dong
,
J.
,
Zhuang
,
X. R.
,
Xu
,
X. H.
,
Miao
,
Z. H.
, and
Xu
,
B.
,
2018
, “
Numerical Analysis of a Multi-Channel Active Cooling System for Densely Packed Concentrating Photovoltaic Cells
,”
Energy Convers. Manag.
,
161
, pp.
172
181
.
11.
Li
,
Y.
,
Xie
,
G. N.
, and
Sunden
,
B.
,
2020
, “
Flow and Thermal Performance of Supercritical n-Decane in Double-Layer Channels for Regenerative Cooling of a Scramjet Combustor
,”
Appl. Therm. Eng.
,
180
, p.
115695
.
12.
Wang
,
H. J.
,
Luo
,
Y. S.
,
Gu
,
H. F.
,
Li
,
H. Z.
,
Chen
,
T. K.
,
Chen
,
J. H.
, and
Wu
,
H. B.
,
2012
, “
Experimental Investigation on Heat Transfer and Pressure Drop of Kerosene at Supercritical Pressure in Square and Circular Tube With Artificial Roughness
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
16
24
.
13.
Dang
,
G. X.
,
Zhong
,
F. Q.
,
Zhang
,
Y. J.
, and
Zhang
,
X. Y.
,
2015
, “
Numerical Study of Heat Transfer Deterioration of Turbulent Supercritical Kerosene Flow in Heated Circular Tube
,”
Int. J. Heat Mass Transfer
,
85
, pp.
1003
1011
.
14.
Jing
,
T. T.
,
He
,
G. Q.
,
Qin
,
F.
,
Li
,
W. Q.
,
Zhang
,
D.
, and
Zhang
,
P. K.
,
2018
, “
An Innovative Self-adaptive Method for Improving Heat Sink Utilization Efficiency of Hydrocarbon Fuel in Regenerative Thermal Protection System of Combined Cycle Engine
,”
Energy Convers. Manag.
,
178
, pp.
369
382
.
15.
Xu
,
K. K.
,
Tang
,
L. J.
, and
Meng
,
H.
,
2015
, “
Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes
,”
Int. J. Heat Mass Transfer
,
84
, pp.
346
358
.
16.
Zhao
,
B. F.
,
Xie
,
L. Y.
,
Wang
,
L.
,
Hu
,
Z. Y.
,
Zhou
,
S.
, and
Bai
,
X.
,
2021
, “
A New Multiaxial Fatigue Life Prediction Model for Aircraft Aluminum Alloy
,”
Int. J. Fatigue
,
143
, p.
105993
.
17.
Rahman
,
M.
,
Wang
,
Z. G.
, and
Wong
,
Y. S.
,
2006
, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J. C-Mech. Sys.
,
49
(
1
), pp.
11
20
.
18.
Yan
,
M. G.
,
Liu
,
B. C.
, and
Li
,
J. G.
,
2001
,
China Aeronautical Materials Handbook
,
Standards Press of China
,
China
.
19.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
,
Li
,
J. G.
, and
Sung
,
C. J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Trans.
,
23
(
3
), pp.
543
550
.
20.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
Higher Education Press
,
China
.
You do not currently have access to this content.