Abstract

Energy storage is an effective approach to bridging the gap between energy supply and demand created due to the sporadic nature of solar energy. Thermal performance enhancement is a key research subject for effective energy storage using latent heat thermal energy storage (LHTES) systems. This paper focuses on the analysis-based design of suitable LHTES system components for solar absorption-based cooling applications with a working temperature of up to 200 °C. Initially, the medium-temperature range (80 °C to 200 °C) phase change material (PCM) is selected using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Further, a suitable heat transfer fluid (HTF) is selected along with the design of a geometrical assessment and an appropriate LHTES system. Finally, the effect of the stirrer on the thermal performance of the LHTES system has been discussed. The melting time of PCM reduces by 58% while input energy increases by 20 kJ with an increase in HTF inlet temperature from 180 °C to 190 °C. However, input energy increases faster with a further increase in HTF inlet temperature while melt time does not reduce significantly. Therefore, selecting optimum HTF inlet temperature is an important criterion for efficient LHTES system design. Implanting a rotating stirrer at 200 RPM inside a PCM tube decreases the net-input energy by 73 kJ. Using back-of-the-envelope calculations, the analysis-based selection of key components of the LHTES system will pave the way forward to designing an application-specific LHTES system. Further, this study can be instrumental in theoretically scrutinizing the stirring effect on PCM charging before experimental analysis.

References

1.
Wu
,
S.
,
2010
,
Materials for Energy Efficiency and Thermal Comfort in Buildings
,
Woodhead Publishing Ltd.
,
Nottingham, UK
, pp.
101
126
.
2.
Agrawal
,
A.
, and
Rakshit
,
D.
,
2021
, “Review on Thermal Performance Enhancement Techniques of Latent Heat Thermal Energy Storage (LHTES) System for Solar and Waste Heat Recovery Applications,”
New Research Directions in Solar Energy Technologies
,
Springer
,
New York
, pp.
411
438
.
3.
Singh
,
R. P.
,
Sze
,
J. Y.
,
Kaushik
,
S. C.
,
Rakshit
,
D.
, and
Romagnoli
,
A.
,
2020
, “
Thermal Performance Enhancement of Eutectic PCM Laden With Functionalised Graphene Nanoplatelets for an Efficient Solar Absorption Cooling Storage System
,”
J. Energy Storage
,
33
, p.
102092
.
4.
Singh
,
R. P.
,
Kaushik
,
S. C.
, and
Rakshit
,
D.
,
2018
, “
Solidification Behavior of Binary Eutectic Phase Change Material in a Vertical Finned Thermal Storage System Dispersed With Graphene Nano-Plates
,”
Energy Convers. Manage.
,
171
, pp.
825
838
.
5.
Liu
,
H.
,
Li
,
S.
,
Chen
,
Y.
, and
Sun
,
Z.
,
2014
, “
The Melting of Phase Change Material in a Cylinder Shell With Hierarchical Heat Sink Array
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
975
983
.
6.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Sopian
,
K.
,
Abdulateef
,
J.
, and
Gitan
,
A. A.
,
2017
, “
Experimental and Computational Study of Melting Phase-Change Material in a Triplex Tube Heat Exchanger With Longitudinal/Triangular Fins
,”
Sol. Energy
,
155
, pp.
142
153
.
7.
Ezan
,
M. A.
,
Ozdogan
,
M.
, and
Erek
,
A.
,
2011
, “
Experimental Study on Charging and Discharging Periods of Water in a Latent Heat Storage Unit
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2205
2219
.
8.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Numerical and Experimental Investigation of Heat Transfer in a Shell and Tube Thermal Energy Storage System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
71
78
.
9.
Wang
,
X. L.
,
Li
,
B.
,
Qu
,
Z. G.
,
Zhang
,
J. F.
, and
Jin
,
Z. G.
,
2020
, “
Effects of Graphite Microstructure Evolution on the Anisotropic Thermal Conductivity of Expanded Graphite/Paraffin Phase Change Materials and Their Thermal Energy Storage Performance
,”
Int. J. Heat Mass Transfer
,
155
, p.
119853
.
10.
Yang
,
L.
,
Xu
,
H.
,
Cola
,
F.
,
Akhmetov
,
B.
,
Gil
,
A.
,
Cabeza
,
L. F.
, and
Romagnoli
,
A.
,
2021
, “
Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology With Material Selection, Storage Performance Evaluation, and Cost Minimization
,”
Appl. Sci.
,
11
(
9
), p.
4180
.
11.
Liang
,
H.
,
Niu
,
J.
, and
Gan
,
Y.
,
2020
, “
Performance Optimization for Shell-and-Tube PCM Thermal Energy Storage
,”
J. Energy Storage
,
30
, p.
101421
.
12.
Kumar
,
A.
, and
Saha
,
S. K.
,
2020
, “
Experimental and Numerical Study of Latent Heat Thermal Energy Storage With High Porosity Metal Matrix Under Intermittent Heat Loads
,”
Appl. Energy
,
263
, p.
114649
.
13.
Pahamli
,
Y.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2018
, “
Inner Pipe Downward Movement Effect on Melting of PCM in a Double Pipe Heat Exchanger
,”
Appl. Math. Comput.
,
316
, pp.
30
42
.
14.
Kumar
,
A.
, and
Saha
,
S. K.
,
2021
, “
Performance Study of a Novel Funnel Shaped Shell and Tube Latent Heat Thermal Energy Storage System
,”
Renewble Energy
,
165
, pp.
731
747
.
15.
Gholaminia
,
V.
,
Rahimi
,
M.
, and
Ghaebi
,
H.
,
2020
, “
Heat Storage Process Analysis in a Heat Exchanger Containing Phase Change Materials
,”
J. Energy Storage
,
32
, p.
101875
.
16.
Qureshi
,
Z. A.
,
Ali
,
H. M.
, and
Khushnood
,
S.
,
2018
, “
Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review
,”
Int. J. Heat Mass Transfer
,
127
, pp.
838
856
.
17.
Wang
,
Y.
,
Wang
,
L.
,
Xie
,
N.
,
Lin
,
X.
, and
Chen
,
H.
,
2016
, “
Experimental Study on the Melting and Solidification Behavior of Erythritol in a Vertical Shell-and-Tube Latent Heat Thermal Storage Unit
,”
Int. J. Heat Mass Transfer
,
99
, pp.
770
781
.
18.
Das
,
D.
,
Sharma
,
R. K.
,
Saikia
,
P.
, and
Rakshit
,
D.
,
2021
, “
An Integrated Entropy-Based Multi-Attribute Decision-Making Model for Phase Change Material Selection and Passive Thermal Management
,”
Decis. Anal. J.
,
1
, p.
100011
.
19.
Rastogi
,
M.
,
Chauhan
,
A.
,
Vaish
,
R.
, and
Kishan
,
A.
,
2015
, “
Selection and Performance Assessment of Phase Change Materials for Heating, Ventilation and Air-Conditioning Applications
,”
Energy Convers. Manage.
,
89
, pp.
260
269
.
20.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
21.
Agarwal
,
A.
, and
Sarviya
,
R. M.
,
2016
, “
An Experimental Investigation of Shell and Tube Latent Heat Storage for Solar Dryer Using Paraffin Wax as Heat Storage Material
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
619
631
.
22.
Fleischer
,
A. S.
,
2015
,
Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications
,
Springer
,
New York
,
94
.
23.
Ebrahimi
,
A.
,
Bandari
,
M.
, and
Parvari
,
M.
,
2009
, “
Effect of Mixer Rotational Speed on Heat Transfer Coefficient in Preparation of Nickle Perovskite From Laboratory to Bench Scale
,”
Iran. J. Chem. Eng.
,
6
(
3
), pp.
71
87
.
24.
Zhang
,
Y.
,
Liu
,
S.
,
Yang
,
L.
,
Yang
,
X.
,
Shen
,
Y.
, and
Han
,
X.
,
2020
, “
Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring
,”
Energies
,
13
(
9
), pp.
1
16
.
25.
Xu
,
H.
,
Romagnoli
,
A.
,
Sze
,
J. Y.
, and
Py
,
X.
,
2017
, “
Application of Material Assessment Methodology in Latent Heat Thermal Energy Storage for Waste Heat Recovery
,”
Appl. Energy
,
187
, pp.
281
290
.
26.
Singh
,
R. P.
,
Kaushik
,
S. C.
, and
Rakshit
,
D.
,
2018
, “
Melting Phenomenon in a Finned Thermal Storage System With Graphene Nano-Plates for Medium Temperature Applications
,”
Energy Convers. Manage.
,
163
, pp.
86
99
.
27.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2014
, “
Thermal Performance of a Phase Change Material-Based Latent Heat Thermal Storage Unit
,”
Heat Transfer—Asian Res.
,
43
(
8
), pp.
706
719
.
28.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2002
, “
Heat Transfer Coefficients in Concentric Annuli
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
6
), pp.
1200
1202
.
29.
Agrawal
,
A.
, and
Rakshit
,
D.
,
2022
, “
Transient Charging Characteristics of Shell and Tube Latent Heat Storage System- A Novel Two-Dimensional Analytical Approach
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
, pp.
1
32
.
30.
Rahimi
,
M.
,
Ardahaie
,
S. S.
,
Hosseini
,
M. J.
, and
Gorzin
,
M.
,
2020
, “
Energy and Exergy Analysis of an Experimentally Examined Latent Heat Thermal Energy Storage System
,”
Renewble Energy
,
147
, pp.
1845
1860
.
31.
Furukawa
,
H.
,
Kato
,
Y.
,
Inoue
,
Y.
,
Kato
,
T.
,
Tada
,
Y.
, and
Hashimoto
,
S.
,
2012
, “
Correlation of Power Consumption for Several Kinds of Mixing Impellers
,”
Int. J. Chem. Eng.
,
2012
, p.
1
6
.
32.
El-Sebaii
,
A. A.
,
Al-Amir
,
S.
,
Al-Marzouki
,
F. M.
,
Faidah
,
A. S.
,
Al-Ghamdi
,
A. A.
, and
Al-Heniti
,
S.
,
2009
, “
Fast Thermal Cycling of Acetanilide and Magnesium Chloride Hexahydrate for Indoor Solar Cooking
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3104
3111
.
33.
Sharma
,
A.
,
Sharma
,
S. D.
,
Buddhi
,
D.
, and
Sawhney
,
R. L.
,
2001
, “
Thermal Cycle Test of Urea for Latent Heat Storage Applications
,”
Int. J. Energy Res.
,
25
(
5
), pp.
465
468
.
34.
Gasia
,
J.
,
Martin
,
M.
,
Solé
,
A.
,
Barreneche
,
C.
, and
Cabeza
,
L. F.
,
2017
, “
Phase Change Material Selection for Thermal Processes Working Under Partial Load Operating Conditions in the Temperature Range Between 120 and 200 °C
,”
Appl. Sci.
,
7
(
7
), p.
722
.
35.
“Dynalene HT,” https://www.dynalene.com/, Accessed January 21 2022.
36.
“Heat Transfer Fluid,” http://hitechsolution.co.in/product-category/thermic-fluid/, Accessed March 5, 2022.
37.
Dunn
,
J. G.
,
Smith
,
H. G.
, and
Willix
,
R. L.
,
1984
, “
The Supercooling of Acetamide
,”
Thermochim. Acta
,
80
(
2
), pp.
343
353
.
38.
Pereira da Cunha
,
J.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review
,”
Appl. Energy
,
177
, pp.
227
238
.
39.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2014
, “
A Review of Phase Change Materials for Vehicle Component Thermal Buffering
,”
Appl. Energy
,
113
, pp.
1525
1561
.
40.
Nagano
,
K.
,
Ogawa
,
K.
,
Mochida
,
T.
,
Hayashi
,
K.
, and
Ogoshi
,
H.
,
2004
, “
Performance of Heat Charge/Discharge of Magnesium Nitrate Hexahydrate and Magnesium Chloride Hexahydrate Mixture to a Single Vertical Tube for a Latent Heat Storage System
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
209
220
.
41.
Haillot
,
D.
,
Bauer
,
T.
,
Kröner
,
U.
, and
Tamme
,
R.
,
2011
, “
Thermal Analysis of Phase Change Materials in the Temperature Range 120–150 °C
,”
Thermochim. Acta
,
513
(
1–2
), pp.
49
59
.
42.
Lane
,
G. A.
,
1992
, “
Phase Change Materials for Energy Storage Nucleation to Prevent Supercooling
,”
Sol. Energy Mater. Sol. Cells
,
27
(
2
), pp.
135
160
.
43.
Olivares
,
R. I.
, and
Edwards
,
W.
,
2013
, “
LiNO3-NaNO3-KNO3 Salt for Thermal Energy Storage: Thermal Stability Evaluation in Different Atmospheres
,”
Thermochim. Acta
,
560
, pp.
34
42
.
44.
Muraishi
,
K.
, and
Suzuki
,
Y.
,
1994
, “
The Thermal Behaviour of Dicarboxylic Acids in Various Atmospheres
,”
Thermochim. Acta
,
232
(
2
), pp.
195
203
.
45.
Janz
,
G. J.
, and
Tomkins
,
R. P. T.
,
1983
, “
Molten Salts: Volume 5, Part 2. Additional Single and Multi Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data
,”
J. Phys. Chem. Ref. Data
,
12
(
3
), pp.
591
815
.
46.
Hasl
,
T.
, and
Jiricek
,
I.
,
2014
, “
The Prediction of Heat Storage Properties by the Study of Structural Effect on Organic Phase Change Materials
,”
Energy Procedia
,
46
, pp.
301
309
.
47.
Mawire
,
A.
,
Lentswe
,
K.
,
Okello
,
D.
,
Lugolole
,
R.
,
Nyeinga
,
K.
, and
Shobo
,
A.
,
2019
, “
Dynamic Thermal Performance of Four Encapsulated PCM Spheres for Domestic Medium Temperature Applications
,”
Energy Procedia
,
158
, pp.
4375
4382
.
48.
Singh
,
R. P.
,
Xu
,
H.
,
Kaushik
,
S. C.
,
Rakshit
,
D.
, and
Romagnoli
,
A.
,
2019
, “
Charging Performance Evaluation of Finned Conical Thermal Storage System Encapsulated With Nano-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
151
, pp.
176
190
.
49.
Krishna Bama
,
G.
,
Anitha
,
R.
, and
Ramachandran
,
K.
,
2010
, “
On the Thermal Properties of Aqueous Solution of D-Mannitol
,”
Nondestruct. Test. Eval.
,
25
(
1
), pp.
67
75
.
50.
Fan
,
Z.
,
Infante Ferreira
,
C. A.
, and
Mosaffa
,
A. H.
,
2014
, “
Numerical Modelling of High Temperature Latent Heat Thermal Storage for Solar Application Combining With Double-Effect H2O/LiBr Absorption Refrigeration System
,”
Sol. Energy
,
110
, pp.
398
409
.
51.
Mukherjee
,
D.
,
2018
, “
A Review Study on the Thermo Physical Properties and Storage Applications of Phase Change Materials
,”
World Sci. News
,
98
, pp.
185
198
. http://www.worldscientificnews.com/wp-content/uploads/2018/02/WSN-98-2018-185-198.pdf
52.
Leonesi
,
D.
,
Braghetti
,
M.
,
Cingolani
,
A.
, and
Franzosini
,
P.
,
1970
, “
Molten Mixtures of K, Na Formates With Alkali Halides. Note I
,”
Z. Naturforsch. A
,
25
(
1
), pp.
52
55
.
You do not currently have access to this content.